
Project and Team-Based Strategies for Teaching Software

Architecture*

MELINA VIDONI, JORGEMARCELO MONTAGNA and ALDO VECCHIETTI
Institute of Design and Development, INGAR CONICET-UTN, Avellaneda 3056, Santa Fe, Argentina.

E-mail: {melinavidoni, montana, aldovec}@santafe-conicet.gov.ar

SoftwareArchitecture remains a difficult topic to teach. This is because of the problem’s complexity, and the integration of

interpersonal and technical skills with knowledge from different areas. This paper presents the introduction of Project-

Based Learning (PBL) and Team-Based Learning (TBL) in a Software Architecture undergraduate course. The goal for

students is to apply in practice the concepts learned using ATAM (Architecture Tradeoff Analysis Method) to evaluate

case studies of real-world architecture. PBL is known for allowing students to experiment with realistic problems and

improve their negotiation and communication skills. TBL offers a different approach to group-based activities, by using

them to determine the structure of the course. This approach is applied in an optional course in a Systems Engineering

degree; its results are positive, having increased students’ attendance and active participation levels. A student survey also

shows acceptance of the new methodology.

Keywords: project-based learning; team-based learning; software engineering; software architecture

1. Introduction

Software companies search for candidates with not

only strong technical knowledge but also with

excellent interpersonal skills such as the aptitude

to work inmultidisciplinary teams, the capability to
meet deadlines, reliable communication and nego-

tiation ability to translate their technical findings to

non-technical staff. In this sense, it is a challenging

matter to design a Software Architecture (SA)

course capable of inducing to the students all

those skills. Software Architecture is complicated

to teach because of its high-level abstractions, the

decisions to make, and the lack of real-world exam-
ples to work with the students [1, 2]. Reports of

education projects related to Software Architecture

are scarce, despite its widespread utilisation to

define system domains that facilitate standardisa-

tion on derived projects [3, 4]. Therefore, there is a

need to provide students with the experience of

acquiring both technical know-how and inter-

personal skills applicable to this area of knowledge.
Several technical topics challenge Software

Architecture teaching. Some are the refinement of

quality attributes, the practical applicability of

extensive theoretical knowledge, and use of enga-

ging, well-documented systems, among others [5–7].

Furthermore, students lack extensive practice of

architecture topics by the time of graduation [1].

On the subject of architecture evaluation, under-
graduate courses are deficient in dynamical

approaches [8], without promoting higher order

thinkingor advanced reasoning skills [9]. Improving

learning by problem-solving in teams and enhan-

cing communication between students are essential

to provide a comprehensive education [10]. It is

relevant as students are used to working alone or

in groups of acquaintances, mostly because of

personal insecurities when collaborating with stran-

gers [11]; also, teaming and co-creation is proven to

reinforce the acquired knowledge [12]. Reducing
these issues becomes critical to prepare students

for real-world jobs, where team-dynamics, negotia-

tion, and communication skills are vital.

With these issues in mind, this article presents a

Software Architecture undergraduate course design

and practice based on Project-Based Learning

(PBL) in conjunction with Team-Based Learning

(TBL). Their purpose is to promote learning tech-
nical knowledge and developing interpersonal

skills.

Architecture evaluation is introduced as a Course

Project, and students apply a reorganised ATAM

(Architecture Tradeoff Analysis Method) to evalu-

ate a real-world case. Teams are assembled by

individually selecting a role, and activities are per-

formed in groups, discussing their proposals
through peer-review and brainstorming. The under-

lying methodology, task planning, and assessment

of the projects are presented as a resource for other

teachers using this methodology.

This paper is organised as follows. Section 2

presents the motivational and educational goals

that originated this proposal and selected pedago-

gical approaches, while Section 3 describes the
generated course syllabus, lectures organisation,

and grading procedure. Section 4 presents an appli-

cation experience, and Section 5 outlines the discus-

sions. Section 6 offer conclusions and possible lines

for future works.

* Accepted 4 May 2018. 1701

International Journal of Engineering Education Vol. 34, No. 5, pp. 1701–1708, 2018 0949-149X/91 $3.00+0.00
Printed in Great Britain # 2018 TEMPUS Publications.

2. Educational goals and proposed
approaches

The lecture-based paradigmwith passive students is
currently the predominant approach to Software

Engineering and Software Architecture education

[13]. Thus, practical strategies on these topics

remain shallow [9], and need to be proposed and

applied. This issue is crucial for architecture evalua-

tion, as its practice depends on teamwork, brain-

storming sessions and group discussions. As a

result, it requires interpersonal and technical skills
that are not usually trained together in undergrad-

uate courses. Therefore, the following educational

goals are formulated:

G1. Step out of the lecture-based paradigm, to

teach experimentation and collaboration

based on practical educational activities [14,

15].
G2. Use real-world projects to train with realistic,

complex and industry-basedproblems inwhich

the benefits of adopting specifics architectural

techniques are visibly appreciated [16].

G3. Integrate and apply concepts of other courses

to support different approaches, application

areas, and domains [17].

G4. Contribute to improving interpersonal skills
such as communication, negotiation, team-

work and project management [18].

Two pedagogical approaches are combined to

achieve these goals.

Project-Based Learning (PBL) leads to higher

student involvement with the instructor in a less

central role [18], as it implies a shift towards the
facilitation of students’ learning [19]. It engages

them with authentic, complex challenges and pro-

blem-solving activities by using real-world exam-

ples as case studies [20] . These projects promote

practical skills such as coping with incomplete or

imprecise information, self-regulation and commit-

ment, cooperation and teamwork; they often

require managing interdisciplinary issues to obtain
positive results [16]. Thus, PBL contributes to all

educational goals, but mainly to G2 and G3.

Team-Based Learning (TBL) cares for participa-

tion in collaborative face-to-face activities, focusing

on teamwork and peer-evaluation [21]. On this

approach, group-based activities determine the

structure of the course [8]; this means that the

course project is prepared first, then deliverables
and exercises are defined, and finally the class

schedule is assembled in conformity to this plan.

Another key point is that students cannot freely

select their teammates as other teaming methodol-

ogies are enforced; this is done to stimulate critical

thinking and peer-review as part of the activities and

evaluation, as well as other communication skills

[21] . TBL targets goals G1 andG4, and it is used to

generate the course syllabus.

However, obtaining real-world case studies may

limit the application of this type of course organisa-
tion. This matter can be covered by agreements

between academia and software industry to gain

access to more real examples other than merely

illustrative ones.

3. Course description

‘‘Architecture-Based Software Design’’ is an elec-

tive final year course of the Information Systems

Engineering degree. Its average number of students

is around 15. The course is biannual and equivalent

to 96 face-hours and 120 personal-study hours.

Face-hours are organised in two sessions of three

hours per week, over 16 weeks (one semester).

Prerequisites are successfully taking both a Soft-
ware Engineering and Software Design undergrad-

uate courses.

The learning objective of this course is to acquire

applied knowledge of Software Architecture in

modern applications. It includes the skills to specify

and evaluate software architectures, identify and

use appropriate architectural styles, deconstruct

existing systems to add new capabilities, document
architectures and read reports, and understand

quality attributes and its tradeoffs to reduce busi-

ness risks associated with the information systems.

The Course Project applies all of these concepts

through the formal evaluation of the architecture of

an existing software system.

The course is structured so that the skills taught

and learned in the classroom and labs are applied to
the eventual Course Project, which must be com-

pleted at the end of the semester. The PBL/TBL

approaches manage this organisation. Therefore,

the course is divided into two parts, according to the

academic schedule ofmidterm examination periods.

The first part focuses on the fundamental con-

cepts and their analysis through small case studies.

It requires nine weeks, with topics posted in three
parts: (1) architectural design, business cycle, and

quality concepts, (2) patterns and tactics, and (3)

documentation. These are introduced through dis-

cussion in classrooms and exemplified by brief case

studies in the labs.

The PBL/TBL is performed in the second part of

the course, requiring seven weeks. It revolves

around the Course Project, and it is designed to
link together the fourth topic -software architecture

evaluation- with the previous ones. It is the primary

practical application of the theory of earlier units,

and the one that contributes the most to the final

Melina Vidoni et al.1702

grading. Its structure is discussed in the following

subsections.

3.1 Course project

The project focuses on an architecture evaluation,

as the main hands-on application of concepts. The
selected evaluation method is ATAM (Architecture

Tradeoff Analysis Method) [22]. However, it is not

the goal of this article to discuss ATAM particula-

rities in detail.

TBL establishes that teams should not bewillingly

selected by students [21]. This aims to increase the

collaboration with other classmates, beyond the

closest acquaintances or friends [11]. Since on indus-
try jobs software engineers are divided into teams or

groups, the learning environment should match this

reality [23]. Therefore, this contributes to goal G4.

At the beginning of the introduction to the

Course Project, the organisation in teams is

guided by the following steps:

1. Students are offered a list of roles (see Table 1),

and they select one—individually—without

disclosing it to other classmates.

2. The instructor notifies students that they will be

working as a team with other students with the

same role.
3. Students group with their teammates. They

have five minutes to introduce themselves to

each other.

Regarding students’ interpersonal skills, there are

three vital points. First, students choose a role
independently of the selection of their acquain-

tances. Second, it mimics real-world industry jobs

by giving students a clear group goal of the project,

different to other teams. Third, this leads to peer-

review both inside the group and outside between

roles, enforcing the need to generate compromises

in the solutions proposed for the case study.

The teams become essential as the ATAM activ-
ities are organised to work on teamwork, peer-

review and brainstorming activities. ATAM out-

puts and artefacts become the assignments and

deliverables required from the student body: Team

Assignments, created by each team with their prio-

rities and points of view, and Brainstorming Out-

puts, produced by peer-review and agreed among

groups. These constitute the assignments that are

part of the grading. Table 2 summarises the activ-

ities scheduled for the Course Project.

In this Course Project, all teamswork on the same

project. Their Team Assignments differ as they need
to perform the tasks from their role standpoint. For

instance, the group ‘‘Database Manager’’ should

focus on the qualities, styles, tactics, risks, and

sensibilities mostly about the management of data

and information on the target system. This simu-

lates the common industry situation of having

different divisions inside the Information Technol-

ogy Section.
Consequently, after working on each Team

Assignment, there is a peer-review instance in

which each team exposes their results to the others

and justifies their selections. The other groups

discuss these results, offer insight into their deci-

sions, and evaluate how those choices affect their

goals. Adverse impacts are debated to reach con-

sensus between teams; i.e., a given tactic by Team A

may affectTeamB’s priorities negatively. The aim is

reviewing the artefacts to correct defects, evaluate

and improve the development process, and study

how each team’s decision affects the others [15].

After each review, some teamsmay be required to

correct their results, either by incorrect use of

theoretical concepts or to adapt their assignment

to the agreements. Following PBL/TBL ideals, the
instructor only acts as a mediator, taking notes of

the students’ participation and outcomes, and

managing the time assigned to each team. This

contributes to the goal G1 by reinforcing the

collaboration within the group and between the

roles by adding more workshops.

As seen in Table 2, this structure includes three

types of classes: lessons, dedicated to introducing
concepts, team workshops, in which teams are

allowed to work on their assignments and evalua-

tion outputs, and general workshops, for peer-

review and brainstorming among groups.

3.2 Assessment overview

Implementing PBL/TBL in the course requires a

new perspective for grading.

Project and Team-Based Strategies for Teaching Software Architecture 1703

Table 1. Roles proposed to students and used during the Course Project

Role Description

Database Managers It focuses on data sources, including development and maintenance, data input/output, and others.

Resource Managers It centres on resource availability, fault tolerance, and strains on both software and hardware resources.

Software Developers This role focuses on the system life cycle, maintenance, evolution and user training.

Systems Integrators It centres on interoperability between the involved systems. It considers data and information exchange, as
well as separation of concerns.

Safety & Security
Managers

It manages privacy, safety, and security, prioritising requests authenticity and including evaluating the
access and actions on the system.

First, the deliverables score is weighted and
combined to obtain the final course grade. For

Team Assignments, the weights are 10%, 25%, and

15%, while for Brainstorming Outputs it is 10%,

20%, and 20%. Overall, they compose the 100% of

the final grade.

Second, to enforce the collaborative activities,

multiple aspects are considered to be part of each

student’s grading. These are divided into technical
and interpersonal skills. Those are graded at each

Team Assignment and Brainstorming Output:

� Technical aspects include the number of elements
generated (i.e., the number of questions, nodes,

situations), their fit to the role, and the compre-

hension level of both the architecture and

domain. The latter is considered during the

teams’ exposition of their work at peer-review
stages and when elaborating the artefacts.

� Interpersonal skills include the use of time to

present their decisions, individual participation

and contribution to peer-reviews, and their will-

ingness to accept peers’ requests. It also covers the

technical language and vocabulary used during

presentations, their contribution to the brain-

storming sessions and the management of project
goals beyond assigned roles.

4. Practical application

The project is a Reference Architecture for the
Advanced Planning Systems domain [24], which

consists of a type of decision support systems,

aimed to automatize the optimisation of enterprise

operations, such as logistics, production planning

Melina Vidoni et al.1704

Table 2. Schedule and tasks of the PBL/TBL Course Project

Week Class Class Type & Content Assignment

1 1 Lecture: Case study introduction by the chief architect. Project goals,
business rules, and limitations. ATAM procedure. Team formation.

2 Teams Workshop: Architectural styles identification and analysis.
Generation of ATAMQuestions (Level 1: quality attributes).

Team Assignment #1:
� Styles identification.
� Quality attributes Questions.

2 3 General Workshop: Peer-review of Team Assignment #1. Agreement
on teams’ priorities and choices, decisions on compromises according
to tradeoffs between styles. Teams are required to update their
assignments.

Brainstorming Output #1:
� Teams’ updated assignment.
� Styles tradeoffs and compromises
agreements.

4 Lecture: Short debriefing on ATAMUtility Tree (Level 1).
Teams Workshop: Utility Tree generation.

Team Assignment #2:
� Utility tree.
� List of identified tactics.
� Situations Questions.3 5 Teams Workshop: Utility Tree generation. Generation of ATAM

Questions (Level 2: Utility Tree situations).

6 General Workshop: Peer-review of Team Assignment #2. Agreement
on compromises caused by teams’ tradeoffs. Generation of the first list
of risks, sensibility, and tradeoffs associated with the approved tactics.

Brainstorming Output #2:
� Teams’ updated assignment.
� List of risks, sensibilities and tradeoff
points.

� List of situations.4 7 Lecture: Short debriefing on Situations (Level 2).
General Workshop: Group brainstorming to generate ATAM
situations.

8 General Workshop: Group brainstorming to generate ATAM
situations.
Lecture: Short debriefingonprioritisationof situations.Assignment of
priority points to teams.

5 9 Teams Workshop: Teams’ review and prioritisation of situations
(from Brainstorming Output #2). Improvement and reconciliation of
the Utility Tree.

Team Assignment #3:
� Situations prioritisation. List and
reasoning.

� Improved Utility Tree.
10 TeamsWorkshop: Improvement and reconciliation of theUtilityTree.

6 11 General Workshop: Peer-review of Team Assignment #3. Discussion
of decisions, agreements on compromises.

12 TeamsWorkshop: Teams’ revision of theUtilityTree, according to the
compromises agreements.

7 13 GeneralWorkshop: Brainstorming related to tactics and the improved
Utility Trees, to refine the list of risks, sensibilities, and tradeoffs.

Brainstorming Output #3:
� Improved list of risks, sensibilities and
tradeoff points. For both styles and
tactics.

14

and schedule, among others. This is a real-world

case coming from an industry-academy collabora-

tion and is thoroughly documented. It contributes

to goals G2 and G3, by emphasising the unification

of contents taught in other courses.

In particular, Reference Architectures are often
created by software factories to develop a specific

kind of system. This is because they allow high reuse

of components and structures on the base of well-

established practices and designs [4]; this leads to

reduced analysis and design times, launching pro-

jects earlier, and ensuring a prompt return of invest-

ment for the customer.

The course resources are managed through the
University online platform. Team Assignments are

uploaded by a team delegate, while Brainstorming

Outputs are submitted by the instructors, who

record and take notes during the workshops. The

resources provided to the students are lecture notes

about ATAM, the formal documentation of the

target architecture following the ‘‘Views &

Beyond’’ style [3], the original list of functional
requirements and quality attributes, and a glossary

of terms and definitions used in the project.

4.1 Assignment highlights

A positive outcome of this course is that, in many

cases, the students pro-actively proposed variations

to notations, tools, and concepts, to adapt them to

the case study and the specific requirements of the
Reference Architecture. Then, spontaneous brain-

storming sessions are performed, usually during

team workshops, to reach a consensus regarding

those matters.

Brainstorming Output #1 analyses the architec-

tural styles to generate a tradeoff chart. The debate

led to two conventions proposed by the students

without the intervention of the instructors. Their
goal is to assess the case study needs. These are:

� Because the case study is a Reference Architec-

ture, some styles have similar risks, sensibilities,
and tradeoffs. Therefore, students decided to

group these styles. An example of this is Client

Server,Multi Tiers and Publish and Subscribe.

� The instructors introduced theHarrison et al. [25]

notation to represent tradeoffs. The students

proposed an additional symbol � to cover the

situation of structural variations of the Reference

Architecture from the case study.

The students also performed adjustments to the

Utility Tree improvement process at Team Assign-

ment #3. Some groups discovered that a handful of

situations could be addressed differently depending

on the variation points of the Reference Architec-

ture. Variation points are templates documented

with the architecture used to allow the designer to

change it by following preplanned steps [3].

Students proposed the concept of ‘partial agree-

ments.’ This implies that in a comparison of situa-

tions, the equivalence happens only on a given

variation point state; equivalent nodes for their

different states should be added to the Tree, to
transform this into a full agreement.

It is relevant that after these debates, the students

used these new concepts and applied them without

any enforcement from the instructors.

4.2 Poll results and instructors reflections

At the end of the course, students are asked to
complete an anonymous poll. Relevant topics

addressed include reasons to choose a role,

assignments difficulty, opinions on peer-review

and brainstorming sessions, assessment of the

documentation, among others. Regarding reasons

to pick their role, more than half students answered

either personal interest (56%) or experience (34%),

while the rest selected other options, such as the
perceived difficulty of the role in the business

domain.

About the documentation, nearly two-thirds of

the students (61%) deemed the provided material as

sufficient but complex. They stated that this was the

first time working with a complete software archi-

tecture specification on the undergraduate courses.

As a result, this influenced their perception of the
assignments difficulty as well (see Fig. 1).

Regarding the content and requested deadline of

the assignments, most of the students agreed that

they had an intermediate-to-high difficulty. Though

industry jobs often demand short closing dates, the

lack of active learning approaches on Software

Engineering education impacts the students’ ability

to work at a faster pace for this project. This can be
temporarily improved by adding more team work-

shops, but the ideal situation is including more

active learning spaces throughout all courses.

Some assignments are perceived as difficult, such

as Team Assignment #2. An explanation for this

aspect is that the first deliverable is mostly straight-

forward with outcomes thought to improve the

understanding of the case study. The other two
required a more extensive and detailed knowledge

of the business limitations, achieved by a through-

out analysis of the provided documentation.

The possible improvements are related to the

presentation of the architecture documentation. It

can be introduced through the viewpoints, each at

different weeks of the course, or it can also be

provided at the start of the course, rather than at
the beginning of the Course Project.

About the peer-review and brainstorming ses-

sions, all answers are positive. Most of the students

agree on the usefulness to integrate the teams’ points

Project and Team-Based Strategies for Teaching Software Architecture 1705

of view towards the primary goal (half the

responses) and in the discussion of trade-offs

between groups (around 40%). Other favourite

answers are the utility to clarify the case study
goals (20%), as well as business andmethodological

concepts (10%).

Finally, students can add comments regarding

the process. For example, a student wrote: ‘‘The

project allowed me to understand quality attributes,

and to learn to identify them. Also, now I understand

which tactics to apply and their tradeoffs. I find this

very useful’’. Regarding deliverables, another stu-
dent stated: ‘‘Positive points for this project are the

teamwork classes that allowed to work on the deliver-

able and clarifying any possible doubts.’’

5. Discussion

There are proposals in the academic literature

regarding Software Engineering education. How-

ever, specific reports on Software Architecture

courses remain scarce. Hidalgo et al. [26] propose

a role-playing game to teachATAMperforming the
project simulation through the game.Wang andWu

[27] use game development to explain Software

Architecture, architecture evaluation, and detailed

design; however, although they used ATAM for the

assessment, there are no clear steps on how to apply

theirmethodology to another course. Andrade et al.

[28] applied ATAM to teach quality attribute

metrics, instead of the evaluation process as an
outcome itself.

This course differentiates itself from others. The

PBL/TBL approach improves both technical and

interpersonal skills, but to the authors’ knowledge,

there are no reports on using TBL for Software

Architecture courses. Also, it does not require

additional tools to be put into action, which sim-

plifies its application. Although this course struc-
ture favours the understanding of quality attributes,

it focuses on the evaluation steps and outcomes

themselves.

As this is just a first experience, several positive

aspects are detected:

� Course attendance increased from previous

years. Only one student missed just one class,

compared to an average of 3�6 non-attendances
on each year, in the last three.

� Students proposed changes to the method and

notations used, doing unplanned brainstorming

and arriving at solutions having the agreement of

all teams, without the intervention of instructors.
� High participation in peer-review instances, by

always using the allocated time. Overall, this

represented an estimated increase of 12% of the

time students spent exposing their production to

other classmates, based on data from the three

previous years. A poll answer stated: ‘‘I believe

that peer-review was productive. This taught us not

to narrow our point of view and to consider more

than one standpoint’’. Another student wrote:

‘‘There were cases in the differences between the

teams became obvious. However, we were able to

unify our goals by discussing the issues, even if in

some cases that was a common tradeoff because the

roles’ goals clashed.’’

It is worth noting that this is a first test of the

proposed course structure, aiming to learn about it,

improve and apply it in future versions.

Melina Vidoni et al.1706

Fig. 1. Students’ appraisal of the deliverables difficulty.

6. Conclusions

This article presents the organisation of a Software

Architecture undergraduate course, mixing PBL

and TBL approaches. Its education goals are: to

allow students to learn through experimentation, to

expose them to real-world projects, to provide a

venue to unify and apply concepts learned in other
courses, and to create opportunities to improve

their interpersonal skills.

These goals are achieved by focusing the practical

application of architecture concepts through the

Course Project: evaluating a real-world case study

using ATAM. This structure can be reused and

applied to other courses with similar objectives as

the methodology, task planning, and assessment
guides are included.

The proposed structure is applied on an under-

graduate course named ‘Architecture-Based Soft-

ware Design’ in the Information Systems

Engineering degree. The case study architecture is

centred on the domain of Advanced Planning

Systems.

Several valuable results are obtained. Students
were required to integrate knowledge and deal with

uncertainty due to the business domain. The team-

ing process led them to work with classmates out-

side their circle of acquaintances, while peer-review

and brainstorming allowed them to validate their

results; this simulated a real-world industry job

environment. Also, the complexity of the Course

Project depends on the business domain of the
target architecture. The target case study of this

course was selected exclusively for this reason, but

another one could impact on the students’ percep-

tion of complexity at the final poll.

Several lessons can be learned from this experi-

ence. The PBL/TBL approach worked as expected

in Software Architecture education, by allowing the

students a practical approach. Working with real-
world cases obtained from academy-industry agree-

ments permitted the students to experiment a more

realistic job environment.

Future works include performing more applica-

tions of this approach to different years of the

course; this can be done with various case studies,

to define how the business complexity affects the

student perception of the project. Also, after more
applications, it will be fruitful and possible to obtain

qualitative information about attendances and par-

ticipation rates, grading values, and other course

statistics.

Acknowledgements—The authors gratefully acknowledge the
financial support for the work presented in this article to
Universidad Tecnológica Nacional (UTN) through PID EIUTI-
FE0003974TC and PIDEIUTIFE0003960TC. Also, the authors
thankful Prof. Juan Carlos Ramos for his cooperation in this

experiment on the ‘Architecture Based Software Design’ course
at UTN-FRSF.

References

1. C. R. Rupakheti and S. V. Chenoweth, Teaching Software
Architecture to Undergraduate Students: An Experience
Report, in IEEE/ACM 37th IEEE International Conference
on Software Engineering (ICSE), Florence, Italy, 2015, pp.
445–454.

2. S. Angelov and P. de Beer, Designing and Applying an
Approach to Software Architecting in Agile Projects in
Education, Journal of Systems and Software, 127, 2017, pp.
78–90.

3. P. Clements, F. Bachmann, L. Bass, D. Garlan, J. Ivers, R.
Little, R. Nord and J. Stafford, Documenting Software
Architecture, 2nd ed. Pittsburg, USA: Pearson Education,
Inc., 2002.

4. R. Cloutier, G.Muller, D. Verma, R. Nilchiani, E. Hole and
M. Bone, The Concept of Reference Architectures, System
Engineering, 13(1), 2010, pp. 14–27.

5. E. Tempero, Experiences in teaching quality attribute sce-
narios, in ACE ’09 Proceedings of the Eleventh Australasian
Conference on Computing Education, 95, Wellington, New
Zealand, 2009, pp. 181–188.

6. C. Costa-Soria and Jennifer Pérez, Teaching software archi-
tectures and aspect-oriented software development using
open-source projects, in Proceedings of the 14th annual
ACM SIGCSE conference on Innovation and technology in
computer science education (ITiCSE), Paris, France, 2009,
pp. 385–385.

7. K. Garg and V. Varma, An effective learning environment
for teaching problem-solving in software architecture, in
Proceedings of the 2nd IndiaSoftwareEngineeringConference
(ISEC), Pune, India, 2009, pp. 139–140.

8. S. M. Goltz, A. B. Hietapelto, R. W. Reinsch and S. K.
Tyrell, Teaching Teamwork and Problem Solving Concur-
rently, Journal of Management Education, 32(5), 2007, pp.
541–562.

9. M. J. O’Grady, Practical Problem-Based Learning in Com-
puting Education, ACM Transactions on Computing Educa-
tion (TOCE), 12(3), 2012, pp. 10:1–10:16.

10. P. Lago and H. van Vliet, Teaching a Course on Software
Architecture, in 18th Conference on Software Engineering
Education & Training, Ottawa, Canada, 2005, pp. 35–42.

11. M. Kyprianidou, S. Demetriadis, T. Tsiatsos and A. Pom-
bortsis, Group formation based on learning styles: can it
improve students’ teamwork?, Educational Technology
Research and Development, 60(1), 2012, pp. 83–110.

12. G. Ribes,M. R. Perello-Marin and O. Pantoja, Co-Creation
in Undergraduate Engineering Programs: Effects of Com-
munication and Student Participation, International Journal
of Engineering Education (IJEE), 34(1), 2018, pp. 236–247.

13. S. S. Yadav and J. Xiahou, Integrated project-based learning
in software engineering education, in International Confer-
ence on Educational and Network Technology (ICENT),
Qinhuangdao, China, 2010, pp. 34–36.

14. M. Coccoli, L. Stanganelli and P. Maresca, Computer
Supported Collaborative Learning in software engineering,
in IEEE Global Engineering Education Conference
(EDUCON), Amman, Jordan, 2011, pp. 990–995.

15. A. Baker, E. O. Navarro and A. van der Hoek, An Experi-
mental Card Game for Teaching Software Engineering
Processes,’’ Journal of Systems and Software, 75(1–2), 2005,
pp. 3–16.

16. G. Hedin, L. Bendix and B. Magnusson, Teaching Extreme
Programming to Large Groups of Students, Journal of
Systems and Software, 74(2), 2005, pp. 133–146.

17. C. Ghezzi and D. Mandrioli, The Challenges of Software
Engineering Education, in International Conference on Soft-
ware Engineering (ICSE), vol. LNCS 4309, St. Louis, MO,
USA, 2006, pp. 115–127.

18. P. J. Clarke, D. Davis, T. M. King, J. Pava and E. L. Jones,
Integrating Testing into Software Engineering Courses Sup-
ported by a Collaborative Learning Environment, ACM

Project and Team-Based Strategies for Teaching Software Architecture 1707

Transactions on Computing Education (TOCE), 14(3), 2014,
pp. 18:1–18:33.

19. W. Hamiza, W. Zin, A. Williams and W. Sher, Introducing
PBL in Engineering Education: Challenges Lecturers and
Students Confront, International Journal of Engineering
Education (IJEE), 33(3), 2017.

20. J. A.Macias, EnhancingProject-BasedLearning in Software
Engineering Lab Teaching Through an E-Portfolio
Approach, IEEE Transactions on Education, 55(4), 2012,
pp. 502–507.

21. L. K. Michaelsen and M. Sweet, ‘‘Team-based learning,’’ in
New Directions for Teaching and Learning.: Wiley Online
Library, 128(5), 2011, pp. 41–51.

22. R. Kazman, M. Klein and P. Clements, ATAM:Method for
Architecture Evaluation, Carnegie Mellon Software Engi-
neering Institute, Pittsburgh, USA, Final Report No.
CMU/SEI-2000-TR-004, 2000.

23. S. C. dos Santos, PBL-SEE: An Authentic Assessment
Model for PBL-Based Software Engineering Education,
IEEE Transactions on Education, 60(2), 2017, pp. 120–126.

24. M. Vidoni and A. Vecchietti, Towards a Reference Archi-
tecture for Advanced Planning Systems, in 18o International
Conference on Enterprise Information Systems—ICEIS, 1,
Roma, Italia, 2016, pp. 433–440.

25. N. B. Harrison and P. Avgeriou, Leveraging Architecture
Patterns to Satisfy Quality Attributes, in Proceedings of the
First European Conference, ECSA 2007, 4758, Aranjuez,
Spain, 2007, pp. 263–270.

26. C. Hidalgo-Montenegro and H. Astudillo, A role-playing
game to teach ATAM (Architecture Trade-off Analysis
Method) a simulation tool and case study, in IEEE Con-
ference of theAndeanCouncil (ANDESCON), Bolivia, 2014.

27. A. I. Wang and B. Wu, Using Game Development to Teach
Software Architecture, International Journal of Computer
Games Technology, 2011, 2011.

28. R. M. Andrade, R. Arakaki and J. C. Cordeiro, Teaching
Software Architecture Quality Using ATAM, in Joint Inter-
nationalConference onEngineeringEducation& International
Conference on Information Technology, Riga, Latvia, 2014,
pp. 170–179.

Melina Vidoni, DEng, graduated from the Universidad Tecnológica Nacional, where she also received her PhD. She is

currently postdoc fellow with a full-time scholarship under the supervision of Prof. Vecchietti and Prof. Montagna at the

National Council for Technical and Scientific Research of Argentina at INGARCONICET-UTN. Her postdoc research

work focuses on integratingAPSwith BigData andworkingwith Software Engineering concepts inOperationsResearch.

Jorge Marcelo Montagna is PhD in Chemical Technology of the Universidad Nacional del Litoral, Santa Fe, Argentina.

He is PrincipalResearcher of theNational Council for Technical and ScientificResearch ofArgentina at INGAR.Also, he

is Professor of Information Technology Management at the Universidad Tecnológica Nacional. His primary expertise

area is Process SystemEngineering,working on themathematicalmodels for operations optimisation in SupplyChain and

Scheduling.

Prof. Vecchietti, PhD, is a Chemical Engineer from the Universidad Nacional del Litoral, Santa Fe, Argentina. He also

obtained the PhD in Chemical Engineering at same University. He is a Principal Researcher of the National Council for

Technical andScientificResearch ofArgentina at INGAR,where he also is the InstituteHead.His expertise area is Process

System Engineering, working on optimisation mathematical models for planning and scheduling of manufacturing and

production companies and its supply chain. He has extensive experience in consulting works with private production

companies.He is also Professor in the Information SystemEngineeringDepartment atUniversidadTecnológicaNacional

(Santa Fe, Argentina).

Melina Vidoni et al.1708

