
SoftwareX 9 (2019) 265–270

Contents lists available at ScienceDirect

SoftwareX

journal homepage: www.elsevier.com/locate/softx

Original software publication

‘‘rsppfp’’: An R package for the shortest path problemwith forbidden
paths
Melina Vidoni ∗, Aldo Vecchietti
Institute of Design and Development (INGAR CONICET-UTN), Avellaneda 3657, Santa Fe, Argentina

a r t i c l e i n f o

Article history:
Received 6 June 2018
Received in revised form 16 January 2019
Accepted 6 March 2019

Keywords:
R package
Shortest path
Forbidden paths
Network flows

a b s t r a c t

The Shortest Path Problem with Forbidden Paths (SPPFP) is a variant of the original shortest path
problem, where the constraints come from a set of forbidden arc sequences that cannot be part of
any feasible solution. Though this problem is addressed in the academic literature and has numerous
applications, there are no open-source implementations of algorithms that solve it. This article
proposes ‘‘rsppfp’’, an R package that offers functionalities that solve the SPPFP by transforming it
into the traditional shortest path problem. Its main strengths are its parallel processing capability, and
it is high compatibility with packages for other network research. In this paper, we describe the design
and functionality of ‘‘rsppfp’’, report an evaluation made with different graph structures, and provide
guidelines and examples for its use.

© 2019 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

Code metadata

Current code version V1.0.4
Permanent link to code/repository used of this code version https://github.com/ElsevierSoftwareX/SOFTX_2018_71
Legal Code License GPL
Code versioning system used Git
Software code languages, tools, and services used Language: R v3.4

R Packages: stringr, dplyr, foreach, doParallel, igraph, tidyr
Compilation requirements, operating environments & dependencies R Packages: stringr, dplyr, foreach, doParallel, igraph, tidyr
If available Link to developer documentation/manual https://melvidoni.github.io/rsppfp
Support email for questions melinavidoni@santafe-conicet.gov.ar

Software metadata

Current software version V1.0.4
Permanent link to executables of this version https://CRAN.R-project.org/package=rsppfp
Legal Software License GPL
Computing platforms/Operating Systems Linux, Windows
Installation requirements & dependencies R Packages: stringr, dplyr, foreach, doParallel, igraph, tidyr
If available, link to user manual — if formally published
include a reference to the publication in the reference list

https://melvidoni.github.io/rsppfp

Support email for questions melinavidoni@santafe-conicet.gov.ar

1. Motivation and significance

The shortest path problem with forbidden paths (SPPFP) has
been introduced by Villeneuve and Desaulniers [1] . On this

∗ Corresponding author.
E-mail addresses: melinavidoni@santafe-conicet.gov.ar (M. Vidoni),

aldovec@santafe-conicet.gov.ar (A. Vecchietti).

problem, given a graph G = (N, A), where N is the nodes set and
A the arcs set, there is also a list F of forbidden paths in G that
cannot be part of any solution path. In this version of the problem,
F is known beforehand; however, each forbidden path may be of
different length with a minimum of three nodes. This problem
is often found on optical networks [2], window networks [3],
logistics and routing [4], among others.

https://doi.org/10.1016/j.softx.2019.03.004
2352-7110/© 2019 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1016/j.softx.2019.03.004
http://www.elsevier.com/locate/softx
http://www.elsevier.com/locate/softx
http://crossmark.crossref.org/dialog/?doi=10.1016/j.softx.2019.03.004&domain=pdf
http://creativecommons.org/licenses/by/4.0/
https://github.com/ElsevierSoftwareX/SOFTX_2018_71
https://melvidoni.github.io/rsppfp
mailto:melinavidoni@santafe-conicet.gov.ar
https://CRAN.R-project.org/package=rsppfp
https://melvidoni.github.io/rsppfp
mailto:melinavidoni@santafe-conicet.gov.ar
mailto:melinavidoni@santafe-conicet.gov.ar
mailto:aldovec@santafe-conicet.gov.ar
https://doi.org/10.1016/j.softx.2019.03.004
http://creativecommons.org/licenses/by/4.0/

266 M. Vidoni and A. Vecchietti / SoftwareX 9 (2019) 265–270

Most academic proposals solve the SPPFP by transforming the
original graph G, along with its F , to an enlarged graph G∗ =
(N∗, A∗) such that every path in G∗ does not contain any forbidden
path f ∈ F . This approach has two advantages:

• In most cases, G and F remain unchanged for long periods
of time. Thus, the transformation is completed only once,
and G∗ can be stored along with the original graph. A new
conversion is required only on the rare cases where G or F
change.
• The problem can be solved on G∗ using a traditional short-

est path with algorithms that efficiently manage time and
resource constraints. These algorithms are implemented in
a plethora of programming languages and frameworks.

As a result, Fig. 1 showcases this solving process, using a paper
notation to indicate input and output data.

R is a highly effective software environment for statistical
analysis and data processing that provides robust support for net-
work research. Examples are known packages such as igraph [5],
WGCNA [6], and others. However, to the authors’ knowledge,
there are no R Packages that provide solutions for the SPPFP.

‘‘rsppfp’’ is motivated from undergoing research in traffic net-
working and routing, in which there are forbidden paths that
represent specific restrictions such as, for example, u-turns or
left-turns in two-ways streets. Therefore, there is a need to trans-
form the current SPPFP, derived from a city street-map, to solve
the shortest path problem.

‘‘rsppfp’’ manipulates input and output in standard R data
frame formats, maximising its compatibility with other packages,
in this way the results can be used with other networking tools.
Its contributions are highlighted in Fig. 1 while describing the
process of solving an SPPFP. Even more, the algorithms included
in this package are prepared to be executed in parallel, using
R’s distinctive capabilities. This configuration is straightforward
for the user since only the number of cores is required as an
input. ‘‘rsppfp’’ includes different transformation algorithms, to
respond to varying constraints inside the problem; some of them
are Villeneuve and Desaulniers’s [1] transformation, Hsu et al. [7]
backward construction, translations to convert a sequence of N∗
back to N , and to use these functions with non-directed graphs.

Also, graphs are formatted as data frames, the transformations
manipulate graphs where nodes are represented by their names,
and the arcs have an undisclosed number of attributes. Even
more, these attributes can be of any type; the transformation
processes them without any additional configuration from the
user.

2. Software description

‘‘rsppfp’’ is a package that enables the transformation of
graphs, and their sets of forbidden paths, to use them later with
other tools. It implements algorithms proposed and accepted
from an academic point of view [1,7]. It is written in R, and it
is available in a GitHub repository, making it possible to clone or
fork.

2.1. Input data & format

The primary input data consists of two different data frames
and an additional parameter for parallel processing.

First, G represents the original graph as a data frame of arcs.
Arcs are mainly represented as origin–destination pairs, with the
column names from and to, respectively. These two columns need
to be in positions 1:2 of the data frame. Each arc may or not
may have additional attributes, and this is handled internally. The
node names may be of any simple type, such as character, integer,

double, and others; however, the returned graph will have nodes
of character type. This is discussed further in Section 1.3.

Second, F represents the data frame of forbidden paths, where
each row of the data frame is a path f ∈ F . The paths may be of
different lengths, but the unused columns must be filled with NA
values. Also, all nodes used in F must be part of G; they can be of
any data type, but they are internally manipulated as characters.
Columns names are irrelevant on this data frame.

It is assumed that forbidden paths involve at least three nodes.
This is because any path of two nodes is a simple arc, and should
be removed from G as they are forbidden.

Third, ‘‘cores’’ is an optional parameter that enables the use of
parallel processing in these algorithms. It is recommended that
for a computer with c cores, the maximum possible value for
this parameter should be c − 1, to allow one core to take care of
the operative system’s functions. If no value is received, ‘‘cores’’
defaults to a 1L value, removing the parallelism.

Code fragment (1) provides the structure to create a sample
graph, with a F = {[s, u, v, t] , [u, v, y, u]}. This graph can be seen
on Fig. 2. It is worth noting that in the SPPFP, a path cannot
contain any complete f ∈ F , but can include arcs that are part
of any given forbidden path; for example, for the graph seen in
Fig. 2, the path p = [s, u, w, v, y] is acceptable: it contains two
arcs used in different f ∈ F ([s, u] and [v, y], respectively), but it
does not include any full forbidden path.

f <- data.frame(V1 = c("s", "u"), V2 = c("u", "v"),
V3 = c("v", "y"), V4 = c("t", "u"),
stringsAsFactors = FALSE)

g <- data.frame(from = c("s", "s", "s", "u", "u", "w",
"w", "x", "x", "v", "v", "y", "y"),

to = c("u", "w", "x", "w", "v", "v",
"y", "w", "y", "y", "t", "t", "u"),

cost = c(1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L),

stringsAsFactors = FALSE)

(1)

2.2. Available functions

‘‘rsppfp’’ implements two transformation algorithms. In both
cases, F must be known beforehand, and each forbidden path
on the set can be of a different length –i.e., include a dissimilar
number of nodes. However, the minimum length for a forbidden
path is three nodes.

It is worth mentioning that these algorithms are non-trivial
since the implementation of its logic is not straightforward. How-
ever, it is not the goal of this article to describe that logic, as their
authors discuss it extensively.

The first one is Villeneuve and Desaulniers’ [1] transformation.
This algorithm is restricted by one rule, limiting that no fi ∈ F
must be, or contain, a sub-path of another fj ∈ F , where i ̸= j; the
meaning is that a forbidden path cannot contain a sub-path of
another forbidden path for the same graph. This transformation
process is implemented on a specific function, whose declaration
is seen in code fragment (2):

modify_graph_vs← function(g, f, cores = 1L) {...} (2)

The second transformation algorithm is the one developed
by Hsu et al. [7], named backward construction. This algorithm
differentiates from the previous one; no restrictions are limiting
the structure of forbidden paths. This transformation process is
implemented in an individual function. Its declaration can be seen
in code fragment (3):

modify_graph_hsu← function(g, f, cores = 1L) {...} (3)

As a limitation these algorithms only work with digraphs;
i.e., graphs where each arc is directed from a specific node to

M. Vidoni and A. Vecchietti / SoftwareX 9 (2019) 265–270 267

Fig. 1. Flow diagram showcasing an SPPFP solving process, and highlighting ‘‘rsppfp’’ package’s contribution.

Fig. 2. Structure of the graph generated using code snippet (1).

another node, and can just be travelled in one particular direction.
To cover this limitation, ‘‘rsppfp’’ provides an additional function
direct_graph(g, cores = 1L) that converts an undirected graph into
a digraph. This is done by duplicating each arc and inverting the
duplicate’s origin–destination pair. This function also supports
parallel processing.

2.3. Algorithms’ evaluation

To evaluate the performance of the implemented algorithms,
several illustrative examples are solved. A total of 27 graphs are
generated using igraph’s erdos.renyi.game() , and the forbidden
paths are constructed with their random_walk() function [5]; re-
sults are limited to prevent walks of less than three nodes. These
graphs result from the combination of the following values: a set
of nodes of size(N) = {100, 300, 500}, the amount of forbidden
paths varying between size (F) = {50, 250, 500}, and a varying
density of size (d) = {0.1, 0.5, 0.9}. In graph theory, a dense graph
is a graph in which the arcs count is close to the maximal number
of possible arcs.

The functions are evaluated when transforming these graphs,
using the R base function system.time(). The code, as well as the

generated graphs, is available as part of ‘‘rsppfp’’’s package, on the
GitHub repository and website. This is executed on a computer
with an Intel i7-4790 CPU at 3.6 Ghz, with 4GB of RAM, using
Linux Ubuntu 16.04 as the operating system; three cores out of
four are used in all the transformations. Fig. 3 shows the results
of the test, faceted by arc density.

As can be seen, in all situations the more general algorithm
(Hsu’s) takes longer to complete, though this difference increases
alongside the number of forbidden paths and density. It is worth
mentioning that this is an expected behaviour, as the transforma-
tion logic iterates on the forbidden paths F –each f ∈ F needs to
be individually evaluated to add new nodes and arcs to the graph.
Because of its logic, Hsu’s backward construction always produces
a smaller G∗ with less added nodes and arcs, while Villeneuve’s
algorithm is slightly faster; this difference is noticeable for larger
values of F .

2.4. Output data & formats

Both types of transformation functions return a graph G∗ as
a data frame where each row represents an arc. It maintains

268 M. Vidoni and A. Vecchietti / SoftwareX 9 (2019) 265–270

Fig. 3. The execution time of Villeneuve’s and Hsu’s algorithms in ‘‘rsppfp’’ in regards to nodes number. It includes variable forbidden paths numbers with a path
length of up to 6 nodes, with facets per density.

the main columns from and to representing the arcs in terms of
origin and destination nodes; additional columns represent other
G arcs’ attributes, if corresponds. However, regardless of the data
type used for N in the original graph, N∗ – the nodes of the
resulting graph – are always of character type. This is because
the generation of the new nodes names follows the proposal
made by Villeneuve and Desaulniers’ [1]: as both algorithms loop
through each node on each forbidden path, these are generated
by incrementally concatenating the original names, split by pipe.

For example, for a given f1 ∈ F = {f , c, p, t, n}, with the
nodes named as letters, the new nodes are: f |c, f |c|p, f |c|p|t,
and so on. In a second example, for f2 ∈ F = {1988, 1985,
1958, 1963}, with nodes as integer values, the new nodes names
are: 1988|1985, 1988|1985|1958 and 1988|1985|1958|1963. As
the package allows transforming graphs with multiple attributes,
its conversion towards G∗ works as follows:

• For arcs between existing nodes, their attributes remain the
same.
• For arcs between a new node (e.g., f |c) and an existing node

(e.g., s), the attributes of the arc are the same as those of the
original arc between the traditional nodes c and s.
• For arcs between new nodes, the attributes are the same as

those from the original arc between the last traditional node
of each new node. For example, for an arc {f |c|p, k|m|t} the
attributes are those from the original arc {p, t}.

However, any paths calculated in G∗ make use of these names. As
a result, ‘‘rsppfp’’ provides an additional function,
parse_vpath(vpath) that translates a path with N∗ to one com-
patible with N nodes. The path must be passed as a vector of
ordered nodes (or vertexes). Related to this, the package also
offers a function to obtain every N∗i nodes that are equivalent to
an original Ninode; this can be used to obtain paths involving said
node.

3. Illustrative examples

This section presents an example to showcase how ‘‘rsppfp’’
can be used. The full code is accessible from ‘‘rsppfp’’’s GitHub
repository in the examples directory, and in the website.

The first step is to define the graph and its forbidden paths.
This is done in code fragment (4), with a set of forbidden paths
defined as F = {f1, f2, f3, f4}, where f1 = {u, v, y, u}, f2 =
{u, w, y, u}, f3 = {w, v, y} and f4 = {x, w, v, y, t}. The graph
structure is the same as the one presented in Fig. 1. Though this
example is defined arbitrarily, and the input data is hard-coded,
it is worth noting that the input can be obtained from different
sources such as databases, spreadsheet files, and others; however,
that process is outside of ‘‘rsppfp’’’s scope.

1a. Load the set of forbidden paths
f <- data.frame(V1 = c("u", "u", "w", "x"),

V2 = c("v", "w", "v", "w"),
V3 = c("y", "y", "y", "v"),
V4 = c("u", "u", NA, "y"),
V5 = c(NA, NA, NA, "t"),
stringsAsFactors = FALSE)

1b. Load the graph as a data frame of arcs
g <- data.frame(from = c("s", "s", "s", "u", "u", "w", "w",

"x", "x", "v", "v", "y", "y"),
to = c("u", "w", "x", "w", "v", "v", "y", "w",

"y", "y", "t", "t", "u"),
stringsAsFactors = FALSE)

(4)

Once the graph and the forbidden path are read, it is possible
to use ‘‘rsppfp’’’s functions to transform the original graph, into
G∗. In this case, some f ∈ F have sub-paths that are part of
otherf . As a result, the example makes use of Hsu’s backward
construction function. This can be seen on (5):

2. Transform the graph into gStar
gStar <- modify_graph_hsu(g, f, cores = 3L) (5)

The resulting data frame G∗ (named in the code as gStar) can
be transformed to other data types, specific of particular libraries.
For example, it is possible to use the function graph_from_data
_frame() provided by igraph [5], to convert G∗ to use igraph
shortest-path functionalities. Using said function also allows plot-
ting the graph. This was done for Fig. 4, which shows the trans-
formed graph using tkplot().

M. Vidoni and A. Vecchietti / SoftwareX 9 (2019) 265–270 269

Fig. 4. The modified graph, produced with Hsu’s backward construction.

In Fig. 4, grey vertexes indicate the new nodes, and black
dashed arcs represent the new links. As ‘‘rsppfp’’ aims to max-
imise compatibility with existent packages, these visualisations
can also be achieved using other libraries, such as ggplot2 [8].

From here, it is possible to use any shortest-path algorithm to
obtain the desired path. However, since those should be applied
to G∗ to avoid the forbidden paths, additional steps need to be
carried. First, a node n ∈ G can have equivalent nodes in G∗. For
example, in Fig. 4 the nodes w, x|w and u|w are both equivalents,
as they all represent the same original node w, but arriving
from different places. Therefore, in order to search for a shortest-
path, it needs the consider the starting node, towards all of the
equivalences of the destination node. The equivalences can be
obtained with the ‘‘rsppfp’’ function get_all_nodes(), as seen on
code fragment (6):

3. Get all nodes where "w" is the destination
dest <- get_all_nodes(gStar, "w") (6)

After that, any shortest path function could be applied. For in-
stance, to use igraph [5] capabilities, gStar needs to be converted
to an igraph class; then it is required to obtain the shortest path
towards each equivalent destination point, and keep only the one
with less weight. The code required to do this is seen at fragment
(7):

4. Convert to igraph in order to use ‘‘shortest_paths’’
from igraph

gStar.igraph <- graph_from_data_frame(gStar)

5. Find shortest paths from "s" to all N* corresponding to "w"
sp <- shortest_paths(gStar.igraph, from = "s", to = dest,

weights = gStar$weight, output = "both")

6. Find shortest of these paths
dist <- vapply(sp$epath, function(path) sum(path$weight),

numeric(1))
shortestPath <- sp$vpath[[which.min(dist)]]

(7)

However, since any path calculated in G∗ is given in terms
of its N∗nodes, it is required to parse the final path back to the
nodes belonging to G. This can be done using ‘‘rsppfp’’’s function
parse_vpath(), as seen on fragment (8).

7. Convert path with nodes from N* to path with nodes
from N

parse_vpath(names(shortestPath))
(8)

‘‘rsppfp’’ provides a convenience function named get_shortest
_path() that summarises the code from snippets (6, 7, 8), simpli-
fying the process of obtaining the shortest path without incur-
ring into forbidden paths. However, this function requires having
igraph installed.

4. Impact

The decision to create and publish ‘‘rsppfp’’ package is influ-
enced by the fact that the SPPFP has several applications [2–4];
this becomes relevant, as this package is part of undergoing
research in logistics, which requires an implementation of the
SPPFP in R. Nonetheless, the SPPFP is still a problem with unex-
plored questions. Even more, current transformation algorithms
are presented in academic journals [9], but their implementation
is not public.

As a result, this article presents a package that aims to bring
some of these transformation algorithms, implemented in R. This
decision is made based on R’s increasing popularity and statistics
abilities, as well as its widespread use in the data science commu-
nity [10]. Furthermore, it is a language that can be used through-
out the whole research cycle, from obtaining and analysing the
data, to displaying it even through interactive websites.

In particular, ‘‘rsppfp’’ objectives are:

• To present a free and easy to use tool for this type of graph
problems.
• To build a common platform with several transformation

algorithms, each one suited to different needs.
• Open-source, open to the possibility of implementing own

functions to incorporate into the package.

A significant advantage is that ‘‘rsppfp’’ can be used out-of-the-
box, it is quickly installed from the GitHub repository, and it is
highly compatible with other packages, as it uses standardised
data types from R. The main contributions are:

• The publication of a ready-to-use package for transform-
ing digraphs with known forbidden paths, into graphs that
can be solved using traditional and efficient shortest-path
algorithms.
• The use of R’s parallel processing capabilities, providing a

simple configuration for users.
• The existence of functionalities to translate paths, as well

as the package’s ability to apply the transformations to
undirected graphs.
• Open-source resource, with avenues available to add more

algorithms, and able to include contributions from the com-
munity.

270 M. Vidoni and A. Vecchietti / SoftwareX 9 (2019) 265–270

5. Conclusions

This article presents ‘‘rsppfp’’, a flexible, compatible and user-
friendly R-package to transform digraphs for the shortest path
problem with forbidden paths. As a result, this transformation
process allows using traditional shortest path functions on the
resulting graphs. Its input and output data is produced in na-
tive R data types, maximising the package’s interoperability with
other networking libraries. Even more, the package makes use
of R’s parallel processing, offering the users a straightforward
way of configuring its use. Time and resources constraints have
been analysed, and the test graphs are available in the GitHub
repository.

‘‘rsppfp’’ is an ongoing project. The authors intend to add new
features and functionalities by implementing different solutions
offered by other academic authors. Examples of these are the
elementary version of the SPPFP, and algorithms for when the set
of forbidden paths is not known beforehand.

Acknowledgments

The authors gratefully acknowledge the financial support for
the work presented in this article to Universidad Tecnológica
Nacional (UTN), Argentina through PID EIUTIFE0003974TC. Also,
the authors appreciatively recognise the extraordinary efforts of
the anonymous reviewers for their suggestions for improving the
read of the article and the quality of the code.

Conflict of interest

The authors declare that there is no conflict of interest.

References

[1] Villeneuve D, Desaulniers G. The shortest path problem with forbidden
paths. European J Oper Res 2005;165(1):97–107. http://dx.doi.org/10.1016/
j.ejor.2004.01.032.

[2] Ahmed M, Lubiw A. Shortest path avoiding forbidden subpaths. In: Sympo-
sium on theoretical aspects of computer science. Freiburg, Germany; 2009.
p. 63–74. https://hal.archives-ouvertes.fr/STACS2009/inria-00359710.

[3] Yang H-H, Chen Y-L. Finding k shortest looping paths with waiting time
in a time–window network. Appl Math Model 2006;30(5):458–65. http:
//dx.doi.org/10.1016/j.apm.2005.05.005.

[4] Yang H-H, Chen Y-L. Finding K shortest looping paths in a traffic-light
network. Comput Oper Res 2005;32(3):571–81. http://dx.doi.org/10.1016/
j.cor.2003.08.004.

[5] Csárdi G, Nepusz T. The igraph software package for complex network
research. Inter J Complex Syst 2006;1–9.

[6] Langfelder P, Horvath S. WGCNA: an R package for weighted correlation
network analysis. BMC Bioinformatics 2009;9. http://dx.doi.org/10.1186/
1471-2105-9-559.

[7] Hsu C-C, Chen D-R, Ding H-Y. An efficient algorithm for the shortest path
problem with forbidden paths. In: International conference on algorithms
and architectures for parallel processing. LNCS, vol. 5574. Taipei, Taiwan;
2009. p. 638–50. https://doi.org/10.1007/978-3-642-03095-6_60.

[8] Wickham H. Ggplot2: Elegant graphics for data analysis. 2nd ed. Switzer-
land: Springer International Publishing; 2016, http://dx.doi.org/10.1111/j.
1541-0420.2011.01616.x.

[9] Pugliese LDP, Guerriero F. A survey of resource constrained shortest path
problems: Exact solution approaches. Netw Int J 2013;62(3):183–200. http:
//dx.doi.org/10.1002/net.21511.

[10] Tippmann S. Programming tools: Adventures with R. Int Wkly J Sci
2015;517:109–10. http://dx.doi.org/10.1038/517109a.

http://dx.doi.org/10.1016/j.ejor.2004.01.032
http://dx.doi.org/10.1016/j.ejor.2004.01.032
http://dx.doi.org/10.1016/j.ejor.2004.01.032
https://hal.archives-ouvertes.fr/STACS2009/inria-00359710
http://dx.doi.org/10.1016/j.apm.2005.05.005
http://dx.doi.org/10.1016/j.apm.2005.05.005
http://dx.doi.org/10.1016/j.apm.2005.05.005
http://dx.doi.org/10.1016/j.cor.2003.08.004
http://dx.doi.org/10.1016/j.cor.2003.08.004
http://dx.doi.org/10.1016/j.cor.2003.08.004
http://refhub.elsevier.com/S2352-7110(18)30095-5/sb5
http://refhub.elsevier.com/S2352-7110(18)30095-5/sb5
http://refhub.elsevier.com/S2352-7110(18)30095-5/sb5
http://dx.doi.org/10.1186/1471-2105-9-559
http://dx.doi.org/10.1186/1471-2105-9-559
http://dx.doi.org/10.1186/1471-2105-9-559
https://doi.org/10.1007/978-3-642-03095-6_60
http://dx.doi.org/10.1111/j.1541-0420.2011.01616.x
http://dx.doi.org/10.1111/j.1541-0420.2011.01616.x
http://dx.doi.org/10.1111/j.1541-0420.2011.01616.x
http://dx.doi.org/10.1002/net.21511
http://dx.doi.org/10.1002/net.21511
http://dx.doi.org/10.1002/net.21511
http://dx.doi.org/10.1038/517109a

	``rsppfp'': An R package for the shortest path problem with forbidden paths
	Motivation and significance
	Software description
	Input data & format
	Available functions
	Algorithms' evaluation
	Output data & formats

	Illustrative examples
	Impact
	Conclusions
	Acknowledgments
	Conflict of interest
	References

