JOURNAL OF THE OPERATIONAL RESEARCH SOCIETY
https://doi.org/10.1080/01605682.2020.1718557

THE
SEEEQE(?”AL Taylor & Francis
SOCIETY Taylor & Francis Group

ORIGINAL ARTICLE

Agile operational research

Melina Vidoni®

, Laura Cunico® and Aldo Vecchietti®

‘ W) Check for updates

3RMIT University — School of Science, Computer Science and Software Engineering, Melbourne, Australia; PInstitute of Design and
Development (INGAR CONICET-UTN), National Scientific and Technical Research Council, Santa Fe, Argentina

ABSTRACT

As project management has become a critical subject in modern-world organisations,
Operational Research (OR) needs to incorporate mechanisms to deal with rapid, unplanned

ARTICLE HISTORY
Received 25 October 2018
Accepted 12 January 2020

changes as well as confusing information and stakeholders with conflicting values. Agile

methods are widely used and tested in Software Engineering (SE) to deal with problems of
the characteristics above. Because of this, after establishing that both OR interventions, as
well as SE developments, have common stages and information evolution, this proposal

KEYWORDS

Systems thinking; soft-OR;
project management;
practice of OR

aims to pose the challenge of applying agility to manage OR projects. Guidelines to adapt
Agile Methodologies to OR are proposed, and a case vignette is studied as an initial test.
Finally, future lines of work are considered to define how the larger project in which this

proposal is embedded will continue.

1. Introduction

For several decades until now, Operational Research
(OR) models are known as vital instruments in
many organisations to make decisions in complex
problems. As many authors pointed out, the devel-
opment and implementation of such mathematical
models face several difficulties: stakeholders with
conflicting interest, poor definitions, confusing
information, changing environments and problems
with constant unclear ramifications (Ackoff, 1979;
Churchman, 1967).

Researchers and practitioners proposed different
methodologies to manage OR interventions, known
as Soft-OR and Problem Structuring Methods
(PSM), characterised by the inclusion of external
stakeholders, as well as the use of techniques to
improve requirement elicitation (Mingers & White,
2010). Some of them are Soft Systems Methodology
(Checkland & Poulter, 2010), Strategic Options
Development and Analysis (SODA) (Eden &
Ackermann, 2001), and Strategic Choice Approach
(Friend, 2006). This research area targeted an unre-
solved issue for OR interventions; then, due to the
wide range of options of these approaches, different
authors provided frameworks to compare them. For
example, while Smith and Shaw (2019) tried to
identify similarities in different methods with a
framework structured around some traditional
assumptions (ontological, epistemological, axiologi-
cal, and methodological), Midgley et al. (2013) pro-
vided an approach for long-term comparisons, while
remaining locally meaningful.

Nevertheless, these methodologies only focus on
the initial stage of the process, without providing a
global approach. Even more, their use in practice is
still a topic under discussion: while it is widely
accepted in some academic circles (Mingers, 2011),
it is shunned in others as is not based on rigorous
mathematical techniques (Ackermann et al., 2009).

Few articles focus on describing the use of Soft-
OR or a PSM during an OR intervention. Da Silva
Filho (2015) recommended PSM to an organisation
to carry out their interventions after determining
that their comprehension of wicked problems was
skewed. Cabrera, Cabrera, Powers, Solin, and
Kushner (2018) used a Soft-OR approach to show-
case the impact of a given design in Community
OR while discussing its consequences and lessons
learned. Finally, Schramm and Schramm (2018)
used a group-decision approach like SODA to sup-
port different decision-making processes in Brazilian
watershed committees.

Nonetheless, it is more frequent to find articles
describing the mathematical background and details
of an intervention to the detriment of the applica-
tion itself and the whole system project (Ackermann
et al., 2009; Ormerod, 2014). OR still centres in
mathematical models and algorithms, instead of its
ability to formulate management problems, solve
and implement them (Ackoff, 1979; Ormerod,
2014). As a result, it has continually focused on the
mathematical representations to the situation
addressed at the expense of systems thinking
(Mingers & White, 2010). In many cases, this led to

CONTACT Melina Vidoni @ melina.vidoni@rmit.edu.au @ RMIT University — School of Science, Computer Science and Software Engineering,

Melbourne, Australia
© Operational Research Society 2020

http://crossmark.crossref.org/dialog/?doi=10.1080/01605682.2020.1718557&domain=pdf&date_stamp=2020-02-12
http://orcid.org/0000-0002-4099-1430
http://orcid.org/0000-0002-0791-9496
https://doi.org/10.1080/01605682.2020.1718557
http://www.tandfonline.com

2 M. VIDONI ET AL.

Table 1. Agility values and principles.

Code Definition
Values Vi Individuals and interactions over processes and tools.
V2 Working software over comprehensive documentation.
V3 Customer collaboration over contract negotiation.
V4 Responding to change over following a plan.
Principles P1 Satisfy the customer through the early and continuous delivery of valuable software.
P2 Changing requirements, even in late phases, to enhance customer’s competitive advantage.
P3 Frequently delivery of working software, preferring shorter timescales.
P4 Business people and developers must work together throughout the project.
P5 Build projects around motivated individuals.
P6 Conveying information on development teams through face-to-face conversation.
P7 To use working software as the primary measure of progress.
P8 Sustainable development: everyone should be able to maintain a constant pace indefinitely.
P9 To have continuous attention to technical excellence and sound design.
P10 Simplicity is essential.
P11 Self-organising teams produce the best designs and architectures.
P12 The team must regularly reflect on how to become more effective.

solving a situation that is widely different to reality
(Ackermann, 2012).

In general, in an OR intervention, the team
needed to implement a decision-making model con-
sists of — at least — a mathematical modeller and a
software engineer. They work in the whole process
with ideas, goals, and definitions of other stakehold-
ers such as end-users, supervisors, and managers.
The generated mathematical model must be linked
to the organisation’s information system to get data
and to provide results. From this perspective, an OR
intervention is similar to the development and
implementation of a software-intensive system. Its
lifecycle starts with ideas, followed by design, execu-
tion, tuning, and maintenance. In this regard, they
need to be managed as systems.

Software Engineering (SE) has several accepted,
tested proposals for dealing with information sys-
tems. SE moved from focusing on how to develop
software (Kneuper, 2017) to establishing process
management methodologies under the name of life-
cycles (Birrell & Ould, 1985; Boehm, 1986; Royce,
1970). However, the emergence of the Internet,
the requirements for shorter time-to-market and the
increase in changing requirements demonstrated the
need for more lightweight methods. These were later
grouped under the concept of agile methods (AM),
founded in the Agile Manifesto (Beck et al., 2001).
AMs are widely accepted in the SE community
(Dingseyr, Nerur, Balijepally, & Moe, 2012; Melo,
Cruzes, Kon, & Conradi, 2011).

This article analyses the use of SE agility for OR
interventions. For this purpose, the characteristics of
the main stages of an OR intervention are identified
together with the information managed at each
stage. This evidences a match between OR interven-
tions and agile lifecycles stages, showing that agility
can be applied to project management in OR. This
is further elaborated in three-step guidelines, which
include selecting a methodology, organising a pro-
ject, and representing the information in artefacts.

Finally, a case study vignette supports the viability
of this approach.

This article is organised as follows. Section 2 dis-
cusses why agility is considered an option, while
Section 3 proposes a solution to manage the infor-
mation and divide the project into stages, creating
the empirical context for using agility in OR.
Section 4 provides practical guidelines to do so, dis-
cussed using a case vignette in Section 5. Finally,
Sections 6 and 7 present discussions and
conclusions.

2. Agile: Why?

AM is a type of project management process. They
anticipate changes and allow a high degree of flexi-
bility - in both project and source code - to rapidly
adapt them. Because of the process and tools that
AMs provide, stakeholders can make small objective
changes without considerable amendments to the
budget or schedule (Dingseyr et al., 2012). This
concept is also applied to manufacturing and supply
chain management (Gligor, Esmark, &
Holcomb, 2015).

In SE, the rise of AMs was powered through the
generation of the Agile Manifesto (Beck et al,
2001): a document establishing the goals and phil-
osophy for agility. It established four values and
twelve principles that any method must have to be
agile; these can be seen in Table 1. Even more, the
Agile Manifesto’s influence contributed to AMs
increasing acceptance (Kneuper, 2017; Tarhan &
Yilmaz, 2014).

Many of these values and principles have a direct
correlation to OR interventions. For example:

e (V4) Responding to change over following a
plan. The emergence of the Internet made devel-
opments to face a shorter time-to-market and a
need to better adapt to unclear and changing
requirements (Boehm, 2006). Thus, agility states
that a plan must: (a) be flexible enough to allow

§>

validati on—,

JOURNAL OF THE OPERATIONAL RESEARCH SOCIETY 3

LverificationJ ILverification—l

Figure 1. The process of information evolution during an OR project.

adapting the system to the required changes, and
(b) provide artefacts and processes to do so.
Usually, an OR model is not able to adapt to the
stakeholders’ needs, because its development is
centred in technical, mathematical properties and
does not consider future changes; then it loses its
usability as it drifts away from the real, targeted
situation to solve a more ideal, outdated case
(Checkland & Poulter, 2010).

e (P2) Changing requirements, even in late
phases to enhance the customer’s competitive
advantage. Related to value V4, requirements
can also change in late stages of developments —
i.e., when the model is reaching completion or is
in-use in the organisation. Having a lifecycle that
provides tools and management process to
review and modify the source code when a
change is detected, can reduce the rate of new
errors. This may encourage the reuse of the
mathematical code.

e (P10) Simplicity is essential. Complex, difficult-
to-read source code or documentation is more
prone to create misunderstandings; even more, it
can increase the cost of modifying an existent
model to the point where it is less expensive to
start over than salvaging what already exists
(Ahmed, Ahmad, Ehsan, Mirza, & Sarwar, 2010;
Dingseyr et al., 2012). Agility aims to simplify
the code, even if it means rewriting it until it
maximises it performances and readability. If the
source code is easy to read, then it is possible to
reuse it in new problems (Haefliger, von Krogh,
& Spaeth, 2008), reducing developing times and
costs, while at the same time refining solutions
(Frakes & Kang, 2005). This property is crucial
for OR models in changing environments.

e (P12) Regularly reflect on how to become more
effective. Agility proposes that teams should be
able to recognise what they did wrong in a pro-
ject, to learn from their mistakes and apply that
new knowledge in future interventions (Dingseyr
et al., 2012). This allows refining practices and
process, to improve steadily.

Current PSM and Soft-OR methodologies imply
capturing and visually representing the stakeholders’
points of view (Mingers & White, 2010). Thus,
PSMs focus on the most “social” aspects of agility,
such as V1, V3, P2, P4, and P6 of Table 1. The
remaining properties are left behind even when they

are a prominent part of an OR project’s process
(Ackermann, 2012).

Creating a project and source code that it is eas-
ily modified without negatively affecting its quality
is not an easy task. This becomes even more chal-
lenging as the size and complexity of projects
increase. AMs apply a technique known as divide-
and-conquer, which implies fragmenting a set of
requirements, selecting a few, and incrementally
building the system by iteratively adding more
requirements to it (Beck et al., 2001). This enables
developers to frequently deliver working code,
reducing the return-of-investment time, and testing
the system-model “on-site” and interoperating with
the others (Boehm, 1986). This is an intrinsically
agile characteristic reflected in the properties P1, P3,
P7, P8, and P10 (see Table 1).

3. Agile and or: Aspects in common

Managing OR interventions implies distinguishing
the elements affecting the process, the emerging sys-
tems and people’s rationales (Mingers & White,
2010); as a result, it requires to also focus on others
activities beyond writing mathematical code. This
section establishes the empirical context that will be
used in Section 4, identifying the states that repre-
sent the evolution of information within an OR pro-
ject and that defines its lifecycle.

3.1. Information evolution

In an OR intervention, information evolves and
grows during a project, becoming more refined
(Ormerod, 2008). Figure 1 summarises the evolution
of the information states of an OR project lifecycle.
This proposal showcases the similarities between OR
and SE projects, aiming to facilitate the adaptation
of AMs.

Although the process for OR is sequentially pic-
tured, it is considered a progressive elaboration: con-
tinuously improving and adding details, as more
specific, accurate information becomes available
while the project progresses (Project Management
Institute, 2017). Whereas it is possible to go back to
several states earlier in order to add more detail, it
is not tolerable to “skip” more refined states when
moving forward. For example, it is feasible to go
back from “Mathematical Model” to “Formal
Specification,” but after completing the changes, the

4 M. VIDONI ET AL.

“Mathematical
“Mathematical

progression must
Design” before
Model” once again.

Regarding each state, in particular, any project
starts with “Ideas,” which defines that a given need
should be satisfied, while “Requirements” formalise
the conditions and capabilities limiting the solution
to that need. Current PSM and Soft-OR methodolo-
gies aim to elicit these two states of information and
agreements about them.

“Formal Specification” aims to structure
“Requirements” to discover specific information,
and prioritise functionalities of the model. This aims
to shape the project process in incremental, iterative
cycles, by following the three steps of Figure 2:

“Mathematical Design” is the primary step before
coding the model. It consists of diagrams and docu-
mentation that communicate its structure to differ-
ent stakeholders by using the Software Architecture
concept of points-of-view: elements that document
the same model from unique perspectives but with
complementary specifications (ISO/IEC/IEEE, 2011).

Finally, the “Mathematical Model” is the source
files with the model coded in the selected mathem-
atical programming language, while the “Answers”
are reports of results such as charts, files, spread-
sheets, etc, derived from raw results, and also related
analysis, and other internal process.

improve the
addressing the

3.2. Lifecycle stages

The process of managing and evolving this informa-
tion defines different periods of a project’s lifecycle.
Each of these phases has a defined goal regarding
the information to be used, and the refinement it

Split structure into areas or sectors. Each one includes: goals, nputs and
outputs (tangible or not), proceduces and requisites.

Compile required and generated data, the input model, alist of expected
i tsdg,ﬂ:u'rp:smﬁmmﬁvfm

Figure 2. Steps to refine “Requirements” into a “Formal
Specification.”

Studies 'Ideas’ to: resolve
conflicts, discover modsl's
bounds, define interaction with
other systems and refine them
as 'Requirements’

2

=

- & 8
Analysis £z
SF

& =

-~ N

Q ~

- 28
Requirements k=
& F

&3

]

Figure 3. Proposed lifecycle stages for OR projects.

Creates definitions for architecture
(‘Mathemathical Design’), components,
and data, documented and verified to
satisfy the Requirements’

Design

produces. The output generates the artefacts (see
Section 4.3) used as input on the next stage, as the
information evolves with the project.

Phases are related to short-term goals of the pro-
ject and not to the situation it aims to solve. SE
established that it is more productive to move in
smaller steps: understanding the problem, designing
and evaluating solutions, and then coding. This is
done instead of attempting to perform all the steps
at the same time - i.e., coding while requesting add-
itional, improved data.

Figure 3 presents the proposed phases and corre-
sponding information states, adding brief definitions
on the phases. The use of stage names established in
SE and nomenclature that is known to both practi-
tioners and academics, simplify the adaptation of
existing methodologies.

“Analysis” focuses on defining who is part of the
project (clients and developers/modellers), what the
project is about, and what the clients genuinely
need. It is essential to understand the value of the
project as a whole, integrate the participants’ know-
ledge and favour the synergy of collective work.
PSM and Soft-OR methodologies can be applied
during this phase (Checkland & Poulter, 2010; Eden
& Ackermann, 2001; Friend, 2006).

“Design” aims to structure the requisites for for-
mal modelling that does not require mathematical
code. This is used as documentation, composed of
the “Formal Specification” and the “Mathematical
Design,” and is a base upon which accountable peo-
ple can be defined, requisites prioritised, and how
they will be translated to the model.

Any misunderstandings, lack of detail or missing
agreements dragged on from the “Analysis” phase
will negatively affect the “Design,” and cause defect-
ive refinements of information. In the “Design”
phase, it is documented how decisions were made,
how the code is organized, which parts of the code
contain each functionality, and how changes should
be handled and addressed. If possible modifications
are considered at the “Design,” later changes in the

Development: coding, testing and
delivery of @ new model or addition.
Implementation: deploy the mode!
in the organization, checking its
interactions with other systems.

Mathematicalll
- B Answers

Mode

“Mathematical Model” become less “traumatic”; the
cost of reworking the code and the chance of intro-
ducing new faults are lowered.

The following step is “Development,” and its goal
is to code the model in a given mathematical lan-
guage, following the specification created during the
“Design” phase: it is the most traditional and core
activity of any OR project. It also includes the gen-
eration of answers, testing regarding the inputs, and
its validation, compared to the specifications of
“Requirements,” and to the goals of the project.

The final stage is “Implementation.” Figure 3
depicts it together with the “Development” as it uses
the same states of information. However, its goal is
to deploy the model in the client’s organisation, to
ensure its adequate interaction with existing sys-
tems, and to train users in its use. Often this stage
does not receive the importance it should, especially
in projects that generate models used to assist in a
single decision. Putting a model into use is essential
to its success.

4, Agile: How?

Making an OR intervention agile implies three steps,
visible in Figure 4. The following subsections pro-
pose guidelines for each of them.

4.1. Selecting a method

Choosing the right method to arrange interventions
allows the management sequence to be defined.
Since AMs have been used in SE for almost two
decades, many authors have compiled experiences to
define specific recommendations using different

Decide on amethod, using different criterions.

]

Client's Practices
ICT Sector Choices
Contractual Limitations

JOURNAL OF THE OPERATIONAL RESEARCH SOCIETY 5

parameters; the authors Qumer and Henderson-
Sellers (2008) provided an extensive report about it,
according to different parameters such as team
sizes, project
among others.

Though there are several papers along these lines
in SE, they are not directly applicable to OR, as
some parameters — such as project or team size -
are not the same in both disciplines. Furthermore,
offering such detailed selection guide requires hav-
ing several real-world application reports specific to
OR, as was the case in SE (Qumer & Henderson-
Sellers, 2008). Therefore, until such data have been
collected, this section only states an initial selection
guideline, to kickstart its application in different
interventions.

Overall, AMs can be grouped into two categories:

length, geographical distribution,

a. Code-focused methods are especially suited for
smaller teams and projects. Though these AMs
provide a specific reduced project management
frame, most of their practices, activities, and
processes are concentrated in coding. Examples
are XP and Crystal.

b. Project-focused methods offer practices, artefacts,
and activities linked with the global vision of
the project. They are usually targeted to mid/
large project or team sizes, or situations in
which an overall organization is mandatory. As
a result, they can often be merged with other
AMs to obtain a more thorough methodology.
Examples are Scrum, Kanban, and Lean.

This categorisation narrows the search, by evalu-
ating internal and external characteristics. The first
set has perks related to the team itself, its training,
background, and organisation, while the second

- group involves restrictions coming from the
i contracting organisation. Figure 5 summarises
Figure 4. Steps to apply agility to OR interventions. this process.

/' Team Size/Location Selection Process

! Team Training H

| Management Choices :

! ' Consider Internal

Chacteristics ESNE—

! & DefineAM | _(ChoseAMfrom | | Organize :

Type Selected Type —: Project's !

! Consider External A : o Iterations |

' Characteristics | meses=ssss

E Project Size/Complexity '

Figure 5. Overview of the AM selection process.

6 M. VIDONI ET AL.

* A leading pillar of agile software development (Ahmed et al, 2010).
+ Agreement onits contribution to increasy productivity(Melo et al,, 2011).

project and team sizes (Qumer & Henderson-Sellers, 2008).
*Good performance for first-time approaches (Doshi & Patil, 2016).

*Many online tools adapt toits processes.

J «Itis also widely recognised (Qumer & Henderson-Sellers, 2008).

Figure 6. Selected Agile Methodologies, and reasons for selection.

Table 2. Comparison of the proposed OR project stages, and AMs processes.

«Its novelty and its ability to improve project productivitymade it one of the most
studied methodologies (Cardozo et al, 2010).

«Itis notlimited to local projects (Vlaanderen etal, 2011).

* There are also many online tools to manage this methodology.

+Highly used and accepted (Livermore, 2007), and adapts to an extensive range of

) *Theseare a “family” of methods: a toolkit of methodologies where each of them serves
to different types of projects and teams (Livermore, 2007).

Scrum

FDD

XP

Crystal

Analysis

Design

Development

Initiate: Project vision,
participants, create a
backlog, initial
release planning.

Plan & Estimate: Create
and approve user
stories, tasks, and
sprint backlog.

Implement: Create
deliverables (code and
design), daily stand-up,
groom the
prioritised backlog.

Review & Retrospect:
Reviews deliverables,
and performance. Define

Develop an Overall Model:
Initial problem model.

Build a Feature List:
Features grouped in sets
& subject areas.

Plan by Feature:
Development plan, class
owners, feature
set owners.

Design by Feature:
Incrementally detailed
modelling of
the system.

Build by Feature:
Incremental and
iterative coding and
testing. It is a
completed client-
valued function.

Listening: Get feedback
and client involvement.

Designing: Simple design,
class owners, coding style,
and so on. Defines the
iteration’s user stories to
be developed.

Coding: Prioritize
working code.

Testing: Integrated with
coding. Reduces bugs
and confirms the

Project: Build a core team,
explore requirements,
build an initial plan, and
shape the methodology.

Delivery: Check the release
plan, organise the
iterations, and work on
their features.

Iteration: Improve
requirements and
overall framework.
Define the features.

Development: code a
feature, and queue it for
integration. Integration:
unify code, and run
automated unit testing.

how to improve.

Release: Handle the
accepted deliverables to
the customer. Define
the lessons learned.

Implementation

client’s approval.
Delivery: Handle the
accepted code to users.
Reflect on the
lessons learned.

Regarding internal characteristics, smaller teams
with lower-to-none experience in applying agility to
OR should use Type A methods; thus the change in
their practices is less significant, while at the same
time includes elements of project management.
Otherwise, larger and distributed teams should
move towards Type B, as these AMs imply a more
radical change, being harder to implement if the
modellers are not trained or present a higher resist-
ance to adjusting their practices. Concerning exter-
nal characteristics, longer projects are more
dependent of managerial activities; other elements
to consider the provision of documentation as part
of the agreement and the selection of an AM already
used at the client’s ICT department, among others.

As can be seen in Figure 5, internal and external
characteristics are not excluding, and need to be
considered at the same time. Which one weighs
more towards a final decision ultimately depends on
the specific characteristics of the situation. To
remain in scope, this article works with four of the

most currently accepted methodologies; Figure 6
summarises why they are selected.

The parallelism showed in Section 3 between the
information managed in OR and SE projects, and
their lifecycle stages allow the definition of which
processes of AM are parts of each stage. Table 2
shows this correspondence. It is noteworthy that,
even though they have different organisations, they
always fit their activities into the lifecycle stages pre-
sented previously.

4.2. Project organization

Organising a project through an AM requires defin-
ing intermediate goals, to establish iterations: transi-
tional steps that incrementally build the leading
towards the final product. Each one yields an
improved, more refined version of the previous
release, and the last one should be the final version.

Therefore, it is vital to determine how many iter-
ations there would be, when will they start and end,

"""""""" o Project Organization
¢ Initial b Formalize Prioritize ;
¢ Analysis’ —> Requirements — Requirements :
! Stage po in Artefacts
. Methodology Define Group

Selection | ! Iterations Max — Requirements —> '

Process | ! Length on Iterations

JOURNAL OF THE OPERATIONAL RESEARCH SOCIETY 7

Figure 7. General steps to organise an OR intervention in iterations, following an agile philosophy.

Table 3. Match between the information states and AMs artefacts for their representation.

Agile methodologies

Information states Scrum (Schwaber, 1995)

XP (Beck, 1999)

FDD (Hunt, 2006) Crystal (Cockburn, 2004)

Requirements User Stories User Stories

Formal Specification Product Backlog
Sprint Backlog
Mathematical Design
Unit Tests

Extensions
Mathematical Model Product Increment
Answers

Extensions

Release Plan
Iteration Plan
Acceptance Test

Working Source Code
End User Material

Features

Feature Sets

Feature List
Selected Feature List

Requirements File

Use Cases

Project Map & Release Plan
Iteration Plan

Test Cases
Overall Model Architecture
Release Components & Build
Help Training & Manual
Statistics

and which functionalities they will develop. To do
this, it is required to perform an initial “Analysis,”
outside any iteration. Though AMs allocate proc-
esses for doing this - ie., Scrum’s Initiate, FDD’s
Develop an Overall Model, XP’s Listening or
Crystal’s Project — PSMs can be used for the same
goal. Mixing them with AMs is entirely possible as
agility is not rigid: it only suggests techniques. Thus,
the general steps can be seen in Figure 7.

Formalising the requirements implies document-
ing them. How this is done depends on the specific
AMs that have been selected; i.e., using FDD leads
towards a feature list, while if using XP the team
builds user stories. Section 4.3 will discuss the infor-
mation representation.

Prioritising requirements involve deciding which
ones should be developed first and why; the reasons
are usually dependencies between them, the effort
needed to code, and its impact on the system’s final
functionality. Requirements should also have an esti-
mated development time; this is calculated based on
experience and, if the team tracks it through metrics
- as done in SE (Achimugu, Selamat, Ibrahim, &
Mahrin, 2014) - this value can be impartially
obtained. This is done to divide a project into
smaller iterations, where each one has an overall
goal - ie., making a specific part of the whole pro-
cess — and a list of the included requirements.
Those with a higher priority must be included at
earlier iterations. This is done considering a max-
imum time limit so that all iterations have a similar
length and work-load.

4.3 Information representation

Artefacts materialise the information evolution pre-
sented in Section 3.1. They are tangible by-products
that describe a given aspect of the system, which
can be represented using different notations (IEEE
Computer Society, 2014). Each AM often offers dif-
ferent artefacts tuned to its specific proposals and
activities. All of them can be framed in the states
seen in Figure 1.

Table 3 condenses these relationships, but it is
not an exhaustive list, only disclosing the most rele-
vant or commonly used artefacts; descriptions are
not included to keep it concise. However, no arte-
facts are included for “Ideas” as they are often pro-
vided as an artefact by the client; thus, even though
AMs acknowledge it, they do not provide specific
representations for it.

Many of these artefacts are generic elements
directed towards information specific to the project
management; examples are “User Stories,” “Product/
Sprint Backlog,” “Features, Feature Sets,” “Use
Cases,” “Iteration Plan.” Adapting them to an OR
project becomes straightforward. Something similar
happens to the code: AMs do not prescribe how the
code is written or structured, though some of them
suggest best practices - i.e., XP’s coding in pairs-; as
a result, they can also be translated to OR.

Other artefacts may prove to be more challeng-
ing, such as writing test cases or generating a
“Mathematical Design” as architecture, in the terms
known to SE.

8 M. VIDONI ET AL.

) Final Model
[€4] fxing & Results
& changing |,
———
[CI]Need [C2] data sent [C6]

by representatives

[C5] fix/obtain
data records

[C3] data request
& model coding

>| Prototype

a

generates

W

Intermediate

Ccé
(€] Results

l

Figure 8. Original process for the RSC intervention.

OR modellers are not used to creating this type of
information refinement before coding (Ackermann,
2012). However, an advantage of AMs is that they
allow building them iteratively and incrementally: it
starts as a general overview (ie., FDD’s Overall
Model), and it is cyclically refined and expanded at
each iteration through activities like Implement,
Design by Feature. More importantly, it is not neces-
sary to create new artefacts since there is currently
an extensive gallery to choose from. This reduces the
resistance to incorporate the new practice.

5. Case vignette: Retail stores chain

This section presents a case study through a reverse
engineering approach of an academic collaboration
performed with a local retail stores chain - herein
named RSC. This was originally carried out using a
traditional unstructured approach, without following
any project-driven lifecycle as a guide; as a result,
several problems appeared throughout the venture.
This process is analysed, issues are recognised, and
different possible agile solutions are presented. The
contrast between the approach originally used and
the Agile Operational Research highlights how agility
can prevent or solve the occurrence of this type of
problems. It is worth noting that this does not imply
that problems need to be known before starting a
project because, in most cases, this is not feasible.
RSC has retail shops in almost half the country
and supplies them through two different ware-
houses. All the stores used SAP - a proprietary ERP
— as their central enterprise system. The company
asked for an evaluation of changes in the structure
of its supply chain in a ten-year period, concerning
specific warehouses, and to minimise its operating
costs. The development of a mathematical model
was proposed to estimate costs and benefits of the
three available options: removing the warehouse,
keeping it as-is, or transforming it to cross-docking.
The intervention started in December 2016 and
completed by August 2017. Even when the result

[C7] new ideas after testing

was positive for RSC, it presented some project
management difficulties. In the following para-
graphs, some of the showcased texts are extracted
from official communications and reports, meeting
recordings, emails and modellers’ notes, among
others. Figure 8 shows the overall process of the
RSC intervention, using the codes referenced
between brackets that appear in the figure - ie,
[C1] - to relate that stage to the textual description.

At the first meeting, the representatives com-
mented on their intentions to change the warehouse,
and the need to evaluate the feasibility and conveni-
ence of carrying it forward or not. After that meet-
ing, modellers rushed to the model development
using it to represent the current situation [C1].
Because the data required were sent in emails with a
significant delay, and without the corresponding
documentation [C2], an additional effort was
needed to understand the information received; this
resulted in assumptions made to move for-
ward early.

However, while the coding advanced, modellers
required more data [C3]. The issue was that, regard-
less of using an SAP, RSC had inconsistent informa-
tion and many sectors were isolated from the
primary system, using local databases and generat-
ing information gaps. The following excerpts of dif-
ferent emails of the managers over a three-month
period exemplify that situation:

e “[...] I apologise, but we were not able to
obtain this data. I could give you only the
following items [...]. We will need to start
collecting the rest of it, as most of them
cannot be obtained through the enterprise
system, and we need to inquire the
Distribution centre about them [...]”.

e “[...] The inconsistency in the cubic meters
seen in December is caused by a wrong input
data from some products. We are trying to
locate which one is, so we can study and
decide how to fix it [...]".

- Sprint

(Review
v

JOURNAL OF THE OPERATIONAL RESEARCH SOCIETY 9

Verified

Model the current
I———J situation ofthe
targetwarehouse
Sprint #
Backlog

Data definition

Sprint #1
Backlog validation &
verification
Final |
Release [— gprint
l Review

Final
Results Report

Data Sets

4

\\ eekly Sprint (Sprint

\Ieetings Review
First
Release
Feature £ m Include conditions
Testi Sprint # - ;
esting Backlog for removing or
acklog cross-docking

Figure 9. Proposed management of RSC's intervention using Scrum.

Then, RSC’s representatives included mid-line
managers in the project, without any formal intro-
duction, and tasked them with preparing the
required information [C5]. This caused delays in the
generation of data and misunderstandings in com-
munication. The following are two differ-
ent requests:

e A modeller requested: “We need the number of
truck travels (both for your trucks and those out-
sourced), on each period (week or month) for
each sale point [...]”. The logistic representative
answered: “[...] This question is too ambiguous.
Could you be more specific?”.

e In another case, a modeller wrote to a mid-line
manager: “[...] To improve the model, we need
the supply routes you are actually using. Is it
possible to obtain that information? [...]”".

As RSC attempted to fix their databases, manag-
ers became interested in new requirements [C5].
These were communicated through email to the
developers. The code was continuously adapted to
include each request [C4] and, as there were no for-
mally specified requirements, changes were not
recorded, and the model was not versioned. Hence,
what should have been final releases became proto-
types with intermediate results [C6], affecting the
provided results, and requesting new constraints
and data to be coded [C7].

Near the end of the intervention, at a meeting
scheduled to show preliminary results, the modellers
discovered that they had dealt with middle manag-
ers, without any decision-making power. New
requirements appeared when presenting the final
report to the company’s heads, some of which com-
promised the very purpose of the project. This defi-
ciency in the elicitation and selection of

stakeholders delayed the project’s completion far
beyond schedule.

After this summary of the project life flow, it is
visible that there was no consistent stream of activ-
ities, and that any form of project management was
disregarded in the intervention, by both modellers
and clients.

5.1. Methodology selection and process
organization

Many AMs can face the same problem differently,
but still, provide a global vision and a satisfactory
outcome. To show there is no single, perfect choice
for each project, two proposals are made regarding
how the RSC situation could have been managed.
The main problem, in this case, is the lack of data
and the database’s inconsistencies [C2, C3, C5] that
delayed the project and forced developers to fix the
model as new, verified data were provided continu-
ously [C4].

The first proposal uses Scrum as AM, and its
process can be seen in Figure 9.

The generation of the product backlog through
an elicitation method in “Analysis” phase, makes
visible the lack of data [C1-C5]. Thus, the first iter-
ation is dedicated to determining which data are
required for the model, while RSC reorganises their
databases. Then, the outcome is the complete set of
verified information to be used as an input in the
model. The second and third iteration, develop the
mathematical models through incremental sprints
[C6], first for the current conditions, and then for
the other decision options. New ideas [C7] can be
included on each sprint after detection on the
weekly meetings/reports. They are translated to user
stories-fragments ~ of functionalities to be

10 M. VIDONI ET AL.

Table 4. Examples of “User Stories” for RSC's case vignette.

Code Story Relevance Estimate Dependencies

EO1 As a manager, | want to compare the operational costs of maintaining the 5 E02, E03, E04
warehouse as is, changing it to cross-docking, or closing the location.

E02 As a manager, | want to know the operational costs (salaries, products transport 4 US12, US30,
costs, earning from sales, warehousing fees, and taxes) for maintaining the US34, US40
warehouse as-is, for the next five years.

EO3 As a manager, | want to know the operational costs (redundancy payments, 4 US13, US24, US40
products distribution costs, earnings for sales, trucks outsourcing costs, and
taxes) for closing the warehouse.

E04 As a manager, | want to know the operational costs (salaries, products transport, 4 US14, US23,
and distribution costs, earnings from sales, and taxes) for changing the US30, US40
warehouse to a cross-docking location and keeping it for the next five years.

Us9 As a modeller, | want to have data (sales average, sales points locations, and 4 5hours US30
distances between them, latest salaries, additional outsourcing costs, latest
taxes) from the past five years in CSV format.

US12 US13 As a modeller, | want to create input data by inferring the costs related to 2 1day

us14 travelling from one sales point to another, in the scenario of [keeping the
warehouse, changing to cross-docking, closing the warehouse].

Us23 As a modeller, | want to have constraints to define which sales points are supplied 2 2 days
by the cross-docking location.

Us24 As a modeller, | want to have constraints to determine the number of products to 4 3 days US14, US30
be distributed from the central warehouse to each sales point location.

US30 As a database manager, | want to retrieve the sales volume, organised by month 2 3 days
and by sales point, and export it to a CSV.

US34 As a modeller, | want to minimise the operational costs to infer earnings for 4 3 hours
keeping the warehouse during the next five years.

US40 As a manager | want the model to export the results of each scenario to an Excel 3 2 days
file, with charts and simple tables.

implemented (see examples in Table 4) and added 2) Data

. . _—" Verification
to the backlogs to be included on versioned models. L
ollection
The second proposal uses Extreme Programming @mm“ous
(XP), and the overall process can be seen in Figure ~ Elicitation A
Scenarios

10. XP provides a code-centric and more straightfor- Need ; ekt

ward approach, but still adding project management e Versioned ‘ Oz\leetinss

to the intervention. As it focuses on creating the Resif:ease o

. .. . > 4) Model

tests for the functionalities before developing them ﬁ

(Beck, 1999), instead of moving directly to coding,
the modellers first prepare the tests using the pro-
vided data. With this, RSC’s data deficiencies would
have been evident sooner, giving RSC representa-
tives time to organise a process of database
unification.

Regarding the project’s organisation, a couple of
initial meetings allow delineating user stories pre-
venting gaps in the requirements specifications and
establishing a baseline upon which to work [CI1, C2,
C7]; examples are shown in Section 5.2. This is
revisited through weekly meetings, acknowledging
the current and re-discovering new
requirements.

XP process could group its iterations to release
versions for modelling each situation. The interven-
tion starts building the model that reflects keeping
the warehouse as-is so that RSC representatives can
conduct the database unification and reorganisation.

progress,

During that process, the information can be handled
in stacks to the modellers. Each stack represents a
small-iteration of the lifecycle and allows working
on specific features: coding only those functionalities
that have verified data and tests. This produces a
versioned release (of the specific situation),

5) Model / Coding
Testing

Figure 10. Proposed management of CRS's intervention
using XP.

accompanied by documentation registering each
functionality and change committed to the code and
a formal results report.

As a result, the “Development” would have pro-
gressed in parallel with RSC’s enterprise system
reorganisation, producing an iteration for each stack
of data, until finishing the group for the as-is situ-
ation. Then, further iterations would only require a
minimal amount of additional data and would be
able to skip the first two steps from Figure 10.

A critical difference between de AMs used is that
XP provides an overall structure but performs
smaller iterations in which execute the five activities
(data collection and verification, testing scenarios
and models, and coding), while Scrum has a pre-
fixed amount of more significant iterations (even
the first one is dedicated to defining the required
data). Thus, while this XP organisation poses an
even workload for both client and modellers, the
Scrum proposal makes the first iteration more
dependent on the client’s database reorganisation.

5.2. Artefacts examples (XP)

Two different possibilities were shown for RSC: XP
and Scrum. To keep this article in focus, only frag-
ments of the artefacts created for XP are presented,
to act as illustrations.

The first artefacts are “User Stories,” used to for-
malise the “Ideas” into “Requirements.” They should
be prioritised, to later define the iterations. Table 4
proposes examples, along with three prioritisation
criterions: estimated development time, if it depends
on other stories and relevance for the client (with
five being the most relevant). The codes of Table 4
are deliberately designated to skip numbers: this is
to show that there should be many more stories.

It is worth noting that user stories are always
written from a specific stakeholder role’s point of
view. They are often detailed while developers and
stakeholders brainstorm together and structured to
be easy to read to the latter. They must be simple
enough to portray the requirements straightfor-
wardly but reducing possible misunderstandings.
Some interesting points can be discussed in
these examples:

e There can be epics: stories that are too generic
and need to be specified into smaller stories.
[EO1] and its subdivisions in [E02], [E03], and
[E04] are examples these. The subdivisions can
also be considered epics, but are used for group-
ing the iterations to build each specific model, as
mentioned in Section 5.1.

e There should be a story for each input data that
needs to be inferred from the existing data. The
stories [US12], [US13], and [US14] show that
data inference must also be documented for each
scenario that needs to be developed.

o Likewise, there should also be stories for each
group of constraints on each scenario (such as

RSC Vignette

croups IMloDEL: KeePING WAREHOUSE As-Is

Lists Input Data Constraints & Reports

Objectives

Input Data

Layers

Time: 2 Weeks

Time: 2 Months

Figure 11. Example of “Release Plan” created using FeatureMap.

JOURNAL OF THE OPERATIONAL RESEARCH SOCIETY 11

[US23] and [US24]) and stories for each object-
ive to be used (i.e., [US34]).

e The expected type of reports to be generated also
need to be addressed as stories, as in many cases
this needs to be coded as part of the model;
[US40] is an example of this.

e Obtaining and organising the input data was
vital. It is suitable to represent each data stack
requirement as a story itself. This is done from
the database manager’s perspective (as in
[US30]) and the modellers’ standpoint
(i.e., [US9)).

With this, it is possible to document the itera-
tions through a “Release Plan,” to indicate when
each iteration should be completed, and the
“Iteration Plans” for each one of them. This can be
done using many of the available online tools exist-
ing for software development projects.

In particular, Figure 11 shows a “Release Plan”
created with FeatureMap (Salience, 2018), which can
be used with most AMs. Furthermore, most of these
tools allow collaboratively updating of the diagrams,
reflecting changes to the iterations. As the agile val-
ues state, it is better to respond to change than to
follow a plan (value V4) strictly.

Regarding the “Mathematical Design,” Section 3.1
defined that it should be generated following the
concept of points-of-view; this implies showcasing
the model from the perspective of different stake-
holders. Therefore, it also aligns with how the user
stories are written. An important element of the
“Mathematical Design” is that it is also incremen-
tally developed: only a general structure is presented
at the beginning of the project, and then it is itera-
tively refined at each iteration; this results on a final,
detailed structure, created alongside the project
and model.

®: FeatureMap

Moper: Warerouse To Cross-Docking)DE!

Constraints & Reports
Objectives

12 M. VIDONI ET AL.

| Objective
' Functions

I
L RentCost + WarehouseCosts + RoutesCosts + CrossdockingCosts :
I
I

Input Data ’

Locations Definitions,
Activity State & Type

i ;

Situation: As-Is
(Warehouse)

Situation:
Crossdocking

A

Situation:
Removal

Max Truck S Trucks Usage & Expansion Cost
=2 Limit Storage -
Capacity ~ Outsourcing Management
Max Route Warehouse Volume Crossdocking Warehouses Cost
Transport Capacity Balancing Usage Management
Routes Selection | | Warehouses Usage Sal.es and penand| [SoesdockangiCost
=" | |Satisfaction Design

Warehouses
Expansion

Security Stock

Routes Cost
Management

1
1
]
]
1
]
1
]
1
Management :
]
1
1
]
1
]
]
]

Figure 12. “Mathematical Design” for the case vignette, from a developers point-of-view. This is an initial model, previous to

any project iteration.

To keep the article in scope, only two possible
views of the case vignette are presented; both of
them belong to a general, pre-coding state.

In particular, Figure 12 shows a general structure
diagram, similar to SE packages; it is targeted at
modellers and project leaders and shows which
principal components are present in the model.
Here, as there is a considerable number of input
data, only those relevant to understand the general
structure are part of the diagram. Each situation has
an input data that defines what each location is (a
warehouse, a sales point, a cross-docking, and
others) and if it is active or not; constraints use that
specific input data in order to simulate each situ-
ation. This is possible because these types of input
data are written with the same structure (as repre-
sented by the arrows). Furthermore, variables are
not present because, at this stage, there is no need
to declare them concretely.

However, a decision-maker stakeholder is not
usually interested in understanding coding details.
Therefore, their point-of-view of the “Mathematical
Design” is different, as seen in Figure 13. Here, they
see how the models are used to obtain the answers
they need: each situation is simulated to obtain indi-
vidual results, and then they are compared and pre-
sented as a report. In particular, this is using BPMN

O

Q Simulate Situations
Select Situati
o Obrain
R —> _| Compare
Results
T =)

(Warehouse. Cross-
SO

Q.

docking, Removal)

Execute
Model

Import Location .
Input Data

Figure 13. “Mathematical Design” for the case vignette,
from a decision-maker client point-of-view. This is an initial
model, previous to any project iteration.

(Business Process Model Notation), which is stand-
ard nomenclature for showcasing business processes.

6. Discussions and limitations of
the proposal

Accepting and validating AMs in SE was a long pro-
cess, which took around 10-years, requiring practi-
tioners to apply these methods in practice and
researchers to study them (Cardozo, Aratjo Neto,
Barza, Franga, & da Silva, 2010; Dingseyr et al,
2012; Kneuper, 2017). As a result, ensuring the suc-
cess of this article’s proposal would be hurried, since
it would require applying the same process, by using
agility in many OR interventions (Ormerod, 2008).
Although AM advantages in SE are verifiable, its
applicability to OR interventions may encounter the

resistance to move to new practices. Furthermore, it
should be noted that poor project management does
not necessarily imply its failure or that of its solu-
tion. Because of this, this article introduces AMs to
OR by stating the feasibility of the adaptation, aim-
ing to have more reports on their use and results.

It is important to mention that AMs are compat-
ible with existent PSM or Soft-OR techniques, as
they do not prescribe specific techniques. Moreover,
AMs-based proposed techniques are not mandatory
either, as these lifecycles support process flexibility
above all.

An advantage of the proposal is converting the
information into tangible artefacts and using this in
OR potentially increase its adoption in different
organisations. SE artefacts and AMs are extensively
used in Information and Communications
Technologies (ICT) departments as well (Cardozo
et al., 2010), and can reinforce the integration, by
providing a seamless link to the use of the newest
techniques (Ranyard, Fildes, & Hu, 2015).

On the other hand, many of the concepts intro-
duced here may be considered as basic for SE.
Nonetheless, their use and modification to fit OR
concepts and practices is novel. This is done by
defining concepts in common, and clear steps to
adopt any AM to OR based on the underlying prin-
ciples. As changes usually require a transition period
where more effort is made to accept them, then,
though AMs are based on the same values and prin-
ciples, it is possible that code-centric methods -such
as the XP or Crystal- appeal more to practitioners,
as they are closer to current practices.

Because each OR intervention has its intrinsic
characteristics that depend on the situation being
analysed, it is not possible to provide a universal,
specific sequence on how to adapt every AM, as this
will ignore the changeable nature that characterises
most situations. Therefore, training practitioners in
the selected AMs techniques is critical to being able
to use them on OR interventions. Although this is
not part of the scope of the article, the authors have
evaluated the possibility of working in coordination
with another academics specialized in OR to apply
this proposal in future interventions to local indus-
tries, to not only train them on AM but also apply
these methodologies in practice.

7. Conclusions

This article acknowledges that project management
has become critical to modern organisations and
that, as a result, OR models should be created taking
into account the continuously changing environ-
ments, their role in the decision-making process and

the constant unclear ramifications the target

JOURNAL OF THE OPERATIONAL RESEARCH SOCIETY 13

situations may have. This perspective differentiates
from traditional model-focused processes, also study-
ing its integration with existing systems. In addition,
it contributes to addressing models as systems per se.

SE agility is particularly strong for taking care of
increasingly demanding projects, favouring the abil-
ity to adapt to changes and establishing short deliv-
ery deadlines that imply faster investment returns.
However, current PSM and Soft-OR focus only on
understanding the problem and ignoring the other
stages without acknowledging several aspects of a
full lifecycle.

As a result, this article proposes the challenge of
adapting and using SE agility to manage OR interven-
tions. As it was in SE, an extensive, widespread use of
AMs in OR interventions is mandatory to obtain data
generalizable enough to discuss advantages and draw-
backs in more detail. Therefore, this article introduces
AMs to OR by stating the feasibility of the adaptation,
aiming to have more reports on their use. This is
founded on the fact that many concepts can be
adapted from SE to OR, as both disciplines have a
similar project lifecycle, as well as an equivalent evo-
lution of information. General guidelines are provided
to instruct on how to port Agile Methods to OR proj-
ects. This is exemplified in a case study vignette,
using both Extreme Programming and Scrum.

However, this is only the front end of a larger
project, enabling possibly future works. The most
relevant is using AM such as Scrum or XP in
real-world interventions with local industries from
different backgrounds. In addition, other related
concepts can be explored, such as formalising
requirements and quality attributes for OR, as well
as studying the impact that code and design smells
have in this type of projects. Moreover, other spe-
cific agile techniques can be explored in the context
of OR interventions, such as estimations, prioritisa-
tions and sprint retros, among others. Finally, as
agility derives from SE, it would be possible in the
future -after several agile OR interventions are
performed- to study how both disciplines can be
integrated through this shared project manage-
ment process.

Acknowledgements

The authors gratefully acknowledge the anonymous
reviewers whose comments and suggestions helped
improve and clarify this manuscript. Furthermore,
authors are especially thankful to Prof Richard Ormerod
for his contributions and insight.

Disclosure statement

No potential conflict of interest was
the authors.

reported by

14 M. VIDONI ET AL.

ORCID

Melina Vidoni
Aldo Vecchietti

http://orcid.org/0000-0002-4099-1430
http://orcid.org/0000-0002-0791-9496

References

Achimugu, P., Selamat, A., Ibrahim, R., & Mahrin, M.
(2014). A systematic literature review of software
requirements prioritization research. Information and
Software Technology, 56(6), 568-585. doi:10.1016/j.
infsof.2014.02.001

Ackermann, F. (2012). Problem structuring methods ‘in
the Dock’ Arguing the case for Soft OR. European
Journal of Operational Research, 219(3), 652-658. doi:
10.1016/j.ejor.2011.11.014

Ackermann, F., Bawden, R., Bosch, O., Brocklesby, J.,
Bryant, J., Buede, D., ... White, L. (2009). The case for
Soft O.R. INFORMS Pubs Online.

Ackoff, R. (1979). The future of operational research is
past. Journal of the Operational Research Society, 30(2),
93-104. doi:10.1057/jors.1979.22

Ahmed, A., Ahmad, S., Ehsan, N., Mirza, E., & Sarwar, S.
(2010). Agile software development: Impact on prod-
uctivity and quality. IEEE International Conference on
Management of Innovation and Technology (ICMIT)
(pp. 287-291). Singapore: IEEE.

Beck, K., Beedle, M., Bennekum, A. C., Cunningham, W.,
Fowler, M., Grenning, J., Thomas, D. (2001).
Manifesto for Agile Software Development. Retrieved
2018, from http://www.agilemanifesto.org/.

Beck, K. (1999). Extreme programming explained—
Embrace change (1st ed.). Boston, USA: Addison-
Wesley Professional.

Birrell, N., & Ould, M. (1985). A practical handbook for
software development (1st ed.). New York, USA:
Cambridge University Press.

Boehm, B. (1986). A spiral model of software develop-
ment and enhancement. ACM SIGSOFT Software
Engineering Notes, 11(4), 22-24. doi:10.1145/12944.
12948

Boehm, B. (2006). A view of 20th and 21st century soft-
ware engineering. 28th International Conference on
Software Engineering (ICSE) (pp. 12-29). Shanghai,
China: ACM New York. doi:10.1145/1134285.1134288

Cabrera, D., Cabrera, L., Powers, E., Solin, J., & Kushner,
J. (2018). Applying systems thinking models of organ-
izational design and change in community operational
research. European Journal of Operational Research,
3(1), 932-945. doi:10.1016/j.ejor.2017.11.006

Cardozo, E., Aratjo Neto, J., Barza, A., Franga, A., & da
Silva, F. (2010). Scrum and Productivity in Software
Projects: A Systematic Literature Review. 14th
International ~ Conference on Evaluation and
Assessment in Software Engineering (EASE) (pp.
131-134). Swindon, UK: BCS Learning & Development
Ltd. doi:10.14236/ewic/EASE2010.16

Checkland, P., & Poulter, J. (2010). Soft systems method-
ology. In M. Reynolds & S. Holwell (Eds.), Systems
approaches to managing change: A practical guide (1st
ed., pp. 191-242). London, UK: Springer London.

Churchman, C. (1967). Wicked problems. Management
Science, 14(4), B-141-B-146. doi:10.1287/mnsc.14.4.B141

Cockburn, A. (2004). In A. Cockburn & J. Highsmith
(Eds.), Crystal clear: A human-powered methodology for

small teams (1st ed., Chapters 2 and 4). USA: Addison-
Wesley Professional.

da Silva Filho, M. (2015). Problem structuring methods
recommendation for a public organization of the Rio
de Janeiro State. Procedia Computer Science, 55,
196-202. doi:10.1016/j.procs.2015.07.033

Dingseyr, T., Nerur, S., Balijepally, V., & Moe, N. (2012).
A decade of agile methodologies: Towards explaining
agile software development. Journal of Systems and
Software, 85(6), 1213-1221. doi:10.1016/j.jss.2012.02.
033

Doshi, V., & Patil, V. (2016). Competitor driven develop-
ment: Hybrid of extreme programming and feature
driven reuse development. International Conference on
Emerging Trends in Engineering, Technology and
Science (ICETETS) (pp. 1-6). Pudukkottai, India: IEEE.

Eden, C., & Ackermann, F. (2001). SODA— The princi-
ples. In J. Rosenhead & J. Mingers (Eds.), Rational ana-
lysis for a problematic world revisited: Problem
structuring methods for complexity (2nd ed., pp. 21-41).
New York, United States: John Wiley & Sons.

Frakes, W., & Kang, K. (2005). Software reuse research:
Status and future. IEEE Transactions on Software
Engineering, 35(7), 529-536. doi:10.1109/TSE.2005.85

Friend,]. (2006). Labels, methodologies and strategic
decision support. Journal of the Operational Research

Society, 57(7), 772-775. doi:10.1057/palgrave.jors.
2602089
Gligor, D., Esmark, C., & Holcomb, M. (2015).

Performance outcomes of supply chain agility: When
should you be agile? Journal of Operations
Management, 33-34, 71-82. doi:10.1016/j.jom.2014.10.
008

Haefliger, S., von Krogh, G., & Spaeth, S. (2008). Code
reuse in open source software. Management Science,
54(1), 180-193. doi:10.1287/mnsc.1070.0748

Hunt, J. (2006). Feature-driven development. En Agile
Software Construction (Primera ed., pp. 161-182).
Londres, Inglaterra: Springer-Verlag London Limited.

IEEE Computer Society. (2014). Guide to the software
engineering body of knowledge (3rd ed.). IEEE.

ISO/IEC/IEEE. (2011). 42010:2011 - Systems and software
engineering - Architecture description. In C. L
Engineering (Ed.), Switzerland: International
Standardization Organization.

Kneuper, R. (2017). Sixty years of software development
life cycle models. IEEE Annals of the History of
Computing, 39(3), 41-54. doi:10.1109/MAHC.2017.
3481346

Livermore, J. (2007). Factors that impact implementing
an agile software development methodology. IEEE
SoutheastCon. (pp. 82-86). Richmond, VA, USA: IEEE.

Melo, C., Cruzes, D., Kon, F., & Conradi, R. (2011). Agile
team perceptions of productivity factors. Agile
Conference (AGILE) (pp. 57-66). Salt Lake City, UT,
USA: IEEE.

Midgley, G., Cavana, R., Brocklesby, J., Foote, J., Wood,
D., & Ahuriri-Driscoll, A. (2013). Towards a new
framework for evaluating systemic problem structuring
methods. European Journal of Operational Research,
229(1), 143-154. doi:10.1016/j.ejor.2013.01.047

Mingers, J. (2011). Soft OR comes of age—but not every-
where!. Omega, 39(6), 729-741. doi:10.1016/j.omega.
2011.01.005

Mingers, J., & White, L. (2010). A review of the recent
contribution of systems thinking to operational
research and management science. European Journal of

https://doi.org/10.1016/j.infsof.2014.02.001
https://doi.org/10.1016/j.infsof.2014.02.001
https://doi.org/10.1016/j.ejor.2011.11.014
https://doi.org/10.1057/jors.1979.22
http://www.agilemanifesto.org/
https://doi.org/10.1145/12944.12948
https://doi.org/10.1145/12944.12948
https://doi.org/10.1145/1134285.1134288
https://doi.org/10.1016/j.ejor.2017.11.006
https://doi.org/10.14236/ewic/EASE2010.16
https://doi.org/10.1287/mnsc.14.4.B141
https://doi.org/10.1016/j.procs.2015.07.033
https://doi.org/10.1016/j.jss.2012.02.033
https://doi.org/10.1016/j.jss.2012.02.033
https://doi.org/10.1109/TSE.2005.85
https://doi.org/10.1057/palgrave.jors.2602089
https://doi.org/10.1057/palgrave.jors.2602089
https://doi.org/10.1016/j.jom.2014.10.008
https://doi.org/10.1016/j.jom.2014.10.008
https://doi.org/10.1287/mnsc.1070.0748
https://doi.org/10.1109/MAHC.2017.3481346
https://doi.org/10.1109/MAHC.2017.3481346
https://doi.org/10.1016/j.ejor.2013.01.047
https://doi.org/10.1016/j.omega.2011.01.005
https://doi.org/10.1016/j.omega.2011.01.005

Operational Research, 207(3), 1147-1161. doi:10.1016/j.
€jor.2009.12.019

Ormerod, R. (2008). The transformation competence per-
spective. Journal of the Operational Research Society,
59(11), 1435-1448. doi:10.1057/palgrave.jors.2602482

Ormerod, R. (2014). The mangle of OR practice: Towards
more informative case studies of ‘technical’ projects.
Journal of the Operational Research Society, 65(8),
1245-1260. doi:10.1057/jors.2013.78

Project Management Institute. (2017). A guide to the pro-
ject management body of knowledge (PMBOK® guide)
(6th ed.). USA: Project Management Institute, Inc.

Qumer, A., & Henderson-Sellers, B. (2008). An evaluation
of the degree of agility in six agile methods and its
applicability for method engineering. Information and
Software Technology, 50(4), 280-295. doi:10.1016/j.
infso0f.2007.02.002

Ranyard, J., Fildes, R., & Hu, T. (2015). Reassessing the
scope of OR practice: The influences of problem struc-
turing methods and the analytics movement. European
Journal of Operational Research, 245(1), 1-13. doi:10.
1016/j.€jor.2015.01.058

Royce, W. (1970). Managing the development of large
software systems. Proceedings of the IEEE WESCON
(pp. 328-338). IEEE.

JOURNAL OF THE OPERATIONAL RESEARCH SOCIETY 15

Salience. (2018). FeatureMap Product Tour. Retrieved
from https://www.featuremap.co/en/tour.

Schramm, V., & Schramm, F. (2018). An approach for
supporting problem structuring in water resources
management and planning. Water Resources
Management, 32(9), 2955-2968. doi:10.1007/s11269-
018-1966-9

Schwaber, K. (1995). SCRUM development process. In J.
Sutherland, C. Casanave, J. Miller, P. Patel, & G.
Hollowell (Eds.), Business object design and implemen-
tation (1st ed., pp. 117-134). Austin, Texas, USA:
Springer, London.

Smith, C., & Shaw, D. (2019). The characteristics of prob-
lem structuring methods: A literature review. European
Journal of Operational Research, 274(2), 403-416. doi:
10.1016/j.ejor.2018.05.003

Tarhan, A., & Yilmaz, S. (2014). Systematic analyses and
comparison of development performance and product
quality of Incremental Process and Agile Process.
Information and Software Technology, 56(5), 477-494.
doi:10.1016/j.infs0f.2013.12.002

Vlaanderen, K., Jansen, S., Brinkkemper, S., & Jaspers, E.
(2011). The agile requirements refinery: Applying
SCRUM principles to software product management.
Information and Software Technology, 53(1), 58-70.
doi:10.1016/j.infsof.2010.08.004

https://doi.org/10.1016/j.ejor.2009.12.019
https://doi.org/10.1016/j.ejor.2009.12.019
https://doi.org/10.1057/palgrave.jors.2602482
https://doi.org/10.1057/jors.2013.78
https://doi.org/10.1016/j.infsof.2007.02.002
https://doi.org/10.1016/j.infsof.2007.02.002
https://doi.org/10.1016/j.ejor.2015.01.058
https://doi.org/10.1016/j.ejor.2015.01.058
https://www.featuremap.co/en/tour
https://doi.org/10.1007/s11269-018-1966-9
https://doi.org/10.1007/s11269-018-1966-9
https://doi.org/10.1016/j.ejor.2018.05.003
https://doi.org/10.1016/j.infsof.2013.12.002
https://doi.org/10.1016/j.infsof.2010.08.004

	Abstract
	Introduction
	Agile: Why?
	Agile and or: Aspects in common
	Information evolution
	Lifecycle stages

	Agile: How?
	Selecting a method
	Project organization
	Information representation

	Case vignette: Retail stores chain
	Methodology selection and process organization
	Artefacts examples (XP)

	Discussions and limitations of the proposal
	Conclusions
	Acknowledgements
	Disclosure statement
	References

