
Self-Admitted Technical Debt in R Packages: An
Exploratory Study

Abstract—Self-Admitted Technical Debt (SATD) is a particular
case of Technical Debt (TD) where developers explicitly
acknowledge their sub-optimal implementation decisions. Though
previous studies have demonstrated that SATD is common in
software projects and negatively impacts their maintenance, they
have mostly approached software systems coded in traditional
object-oriented programming (OOP), such as Java, C++ or .NET.
This paper studies SATD in R packages, and reports results
of a three-part study. The first part mined more than 500 R
packages available on GitHub, and manually analysed more
than 164k of comments to generate a dataset. The second part
administered a crowd-sourcing to analyse the quality of the
extracted comments, while the third part conducted a survey to
address developers’ perspectives regarding SATD comments. The
main findings indicate that a large amount of outdated code is left
commented, with SATD accounting for about 3% of comments.
Code Debt was the most common type, but there were also
traces of Algorithm Debt, and there is a considerable amount of
comments dedicated to circumventing CRAN checks. Moreover,
package authors seldom address the SATD they encounter and
often add it as self-reminders.

Index Terms—Self-Admitted Technical Debt, Mining Software
Repositories, Empirical Software Engineering, R Programming.

I. INTRODUCTION

Delivering high-quality, defect-free software is the goal of

all software projects; this is even more relevant in scientific

software, where it is often used to obtain research results in a

myriad of disciplines. Nonetheless, in both cases, developers

are often rushed into completing tasks for various reasons,

such as cost reduction, short deadlines, or even lack of

knowledge [1].

Technical Debt (TD) is a metaphor that reflects the implied

cost of additional rework caused by choosing an easy solution

now instead of using a better approach that would take longer

[2]. The notion of Self-Admitted Technical Debt (SATD) refers

to the situation where the developers are aware that the current

implementation is not optimal, and write comments alerting

of the problems of the solution [3]. Though several studies

have been conducted along these lines, they have mostly

used the same domain: object-oriented programming (OOP)

repositories [4].

Previous systematic mappings demonstrated a lack of

software engineering research in R programming, both from

an academic and practitioner’s perspective alike [5]. R

is a package-based programming ecosystem for statistical

analysis, visualisations and datasets, with a unique mixture

of paradigms: it is dynamically typed, vectorised, both

lazy and side-effecting, fostering functional and interactive

programming but also providing core object-oriented (OO)

features [6]. Moreover, though it has an ever-growing

community, most package contributors are not software

engineers by trade [7], and only a few of them are mindful of

the inner concepts of the language [8].

As a result, this paper conducted a three-part mixed-methods

study to understand SATD in a new domain: R package

programming. The first part mined 503 R packages from

GitHub, and manually analysed more than 164k of comments

to generate a dataset. The second part directed a crowd-

sourcing to analyse the quality of the extracted comments,

while the third part conducted a survey to address developers’

perspectives regarding SATD comments. By analysing the

collected data, this paper aims to answer the following research

questions:

• RQ1: How much SATD exists in R packages? Focused

on the type of content addressed on inline comments

and how many of them represent SATD, depending

on their location (package or test code). The resulting

distribution was compared to that of traditional OOP

projects. Following a systematic process, R packages

were mined from GitHub, and internal comments were

extracted and manually classified.

• RQ2: What is the quality of comments in R packages?
In R, both code and comments may be different from

those present in other studies. This RQ was answered

through a crowd-sourcing approach implemented through

a developers’ survey (Q-Survey); a sample of comments

was classified in terms of usefulness (familiarity and

necessity) and clarity (precision and simplicity).

• RQ3: What types of TD are most commonly
admitted? The comments identified as SATD from RQ1

were manually classified again, to determine which type

of debt they represent. Selected SATD comments were

compared to [3] dataset to uncover differences, and to

define new patterns for R.

• RQ4: Are developers aware of SATD? Aimed to

discover possible differences in the commenting practices

of R programmers, to determine differences with OOP-

centred programmers. The authors and maintainers of

the mined packages were invited to participate in an

anonymous survey (A-Survey); this survey’s structure

replicated one used by a previous work [9].

More than 164k of comments were manually read and

classified into 12 types of TD. The A-Survey obtained

about 102 responses, while Q-Survey surpassed the expected

threshold to obtain 140 complete responses. This manuscript

179

2021 IEEE/ACM 18th International Conference on Mining Software Repositories (MSR)

978-1-7281-8710-5/21/$31.00 ©2021 IEEE
DOI 10.1109/MSR52588.2021.00030

makes the following contributions:

• An analysis of TD in R packages. Results showcase,

an excessive amount of outdated code left commented

out, poor testing quality with comments written to avoid

automation of tests, and a tendency to bypass CRAN

checks. Moreover, Code and Test are the types of

TD most commonly admitted, though Algorithm Debt

was also detected. Comment quality was often deemed

low and obscure, and developers indicated they seldom

address it in their packages.

• A comparison with results from other studies, also

exploring source code comments, but in OOP projects.

This includes SATD text patters, developers’ perspectives,

and types of datasets.

• A dataset of SATD comments in a large variety of R

packages, to use in future studies, as well as the final list

of text patterns discovered in this study.

Structure of the paper. Section II describes related works,

and how this study differentiates itself from others. Section

III presents the methodology, detailing the selection of

repositories to mine, the dataset generation, the construction of

surveys, the sample selection and the data analysis planning.

After that, Section IV answers each proposed question,

highlighting key findings. Section V provides the main

implications of the findings, while Section VI discusses threats

to validity. Finally, Section VII concludes this work.

II. RELATED WORKS

SATD and MSR studies have been commonly carried in

empirical software engineering. A baseline study manually

classified source code comments to obtain 62 SATD patterns

[3], while another one explored projects to understand what

types of TD were most commonly mentioned, and what

heuristics can be followed to discover it [2]. These were

later expanded by a large-scale automated replication across

159 studies [10]. Using the manually generated dataset, [1]

used natural language processing to automatically mine and

detect SATD occurrences in ten open source projects. A study

created an automated prediction system to estimate SATD in

comments in OOP software [11]. Finally, another mining study

investigated the removal of SATD through a two-part study

that combined mining repositories and developer surveys [9].

However, most studies in the area of SATD are often

conducted in projects using traditional OOP. This limitation

was highlighted by a previous systematic literature review that

identified the need for more sources [4]. An example along

these lines still worked with OOP software but mined SATD

from GitHub issues rather than inline comments [12].

Exploring R contributes to explore SATD in a domain that,

to the author’s best knowledge, has not yet been explored, but

also expands research regarding software engineering in this

unique programming paradigm.

However, studies related to R programming from a software

engineering perspective are scarce. A mining study explored

how the use of GitHub influences the R ecosystem, regarding

the distribution of R packages and for inter-repository

package dependencies [13]. Another mining project studied the

maintenance performed in R’s statistical packages to explore

change frequency, and variability between versions [14]. At

the same time, in terms of programming theory, another one

assessed the success of different R features to evaluate the

fundamental choices behind the language design [15].

III. METHODOLOGY

This empirical study was divided into three parts. First,

mining of R package repositories in GitHub with manual

analysis, second, an open anonymous survey to peruse

the quality of comments, and lastly another anonymous

survey directed to package authors and maintainers. The next

subsections describe the various steps followed to build the

dataset.

A. Dataset Generation

The repositories to be mined were selected following the

systematic process outlined by Kalliamvakou et al. [16].

First, inclusion and exclusion criteria were defined to

determine which packages should be considered. Overall,

included R packages had to be public, open-source

repositories written in R, with a basic R package structure (as

defined by [17]), and including unit testing. On the contrary,

excluded packages were forks from other packages, written

in a natural language other than English, created before 2010

or with no commits after 2018. Personal, deprecated, archived

or non-maintained packages were also disregarded, as well as

those that were books, data packages or collections of other

packages unified into a single one.

Six control packages were selected by experts’ recommen-

dation. These were: httr, pkgdown, ggally, roxygen2,

igraph, and raster. These packages were used to define

the search string employed to collect the packages. This string

followed GitHub’s search syntax1. The process was iterative,

and control papers had to be found up to the fifth search

page. The string was approved after completing the search

four times during the same week, and obtaining the control

packages before the fifth page.

The search was completed using GitHub’s Advanced

Search2, with the string package NOT personal
created:>2010-01-01 pushed:>2018-01-01 language:R.

It also excluded forks, any type of license, and were sorted

by “best match”. The search produced 630 repositories that

were manually checked to ensure the inclusion/exclusion

criteria. 503 unique repositories of R packages were used
in this study.

Results of the search were stored as a list of “slugs”: a com-

bination of the type accountName/repositoryName.

An R script was used to download the repositories using

the GitHub API automatically. After that, the same script

inspected all repositories, extracting all the internal comment

lines (those starting with #); documentation comments (i.e.

1See: https://docs.github.com/en/github/searching-for-information-on-git
hub/understanding-the-search-syntax

2See: https://github.com/search/advanced

180

Roxygen’s) were excluded from this study. This produced a

first dataset that included: package name, location (R code,

or test code), file name, start and end line of the comment,

comment body, and if it was a full line or not. The last column

was a true/false value used to indicate if that line of code

contained only the comment, or if it started with code and the

comment was on the last part.

R does not have a comment syntax to allow a multi-line

comment (i.e. an equivalent to Java’s *...*\, so developers

often write several related single-line comments one after

another. Therefore, the first dataset was automatically parsed

to detect this situation (only on full-line comments) and to

merge the start/end line, as well as the comment body. This

second dataset had the same structure as the first one. Overall,
164349 lines of comments were mined.

B. Package Authors’ Survey (A-Survey)

R packages show information about their authors and

maintainers in the “description” file, often disclosing their

email addresses. The selected repositories were automatically

explored with an R script, to extract this information and

consolidate the records; i.e., each email was associated with

a list of package names in which it was found. 845 email
addresses were mined through this process.

The survey’s questionnaire was constructed as an adjusted

replica of [9]; this decision was deliberate in order

to be capable of comparing results. Given R’s diverse

disciplinary background[7], the wording of the questionnaire

was simplified, and two questions were added: one regarding

what TD is, and a “free space” comment. It also included:

1) demographics regarding role and development tasks of the

project, 2) Likert-scale questions about frequency of finding

or addressing SATD comments, and 3) open-ended questions

asking how they act upon those comments.

The survey was implemented in Qualtrics, and its automated

distribution by email was used to send the questionnaire to the

selected participants. From the 845 emails sent, 64 bounced

back, and 102 developers completed the questionnaire. The
analysis was conducted only using these 102 submissions.

The full questionnaire and the unparsed responses are

available in the accompanying dataset3.

C. Comments’ Quality Survey (Q-Survey)

To analyse the quality and usefulness of the comments, each

sampled comment had to be quantified in a 5-points Likert-

scale in two categories. These represented qualities intrinsic

to “technical writing”4, namely:

• Usefulness. Given by the familiarity (use of straightfor-

ward language, such as plain English) and necessity (if it

provides what is required for comprehension and nothing

more) of the comment.

3See: https://tinyurl.com/yyfwvs94
4See: https://www.hurleywrite.com/Blog/294209/The-4-Pillars-of-Clarity-i

n-Technical-Writing.

• Clarity. Related to effectively communicating with

its intended audience, and evaluated through precision
(specificity and exactness) and simplicity.

A crowd-sourcing approach, implemented through an

anonymous online survey, was used to obtain this clas-

sification. In here, participants were not paid to classify

the comments manually but were filtered after a short

demographic section regarding if they had any type of

programming experience. This allowed classifying their

responses according to their knowledge in R, or other

languages. After that, the questionnaire showcased two blocks,

each of them with comments to be classified.

The generation of this survey posed a statistical sampling

challenge, as several variables were taken into account.

• How many comments to include per survey. Aiming

to create a survey that required less than 10 minutes

to complete, a dummy questionnaire (with the correct

structure) was loaded into Qualtrics. The automated

time estimation determined that 36 comments (plus
demographics) yielded an 8.5 minutes-long survey.

This was further tested with two test participants.

Comments were divided into two groups: SATD and

“valuable non-SATD” (see Section IV-A). They would be

equally distributed, with 16 comments for each group.

• Which comments to include for classification. A conser-

vative sample size calculation was used to determine the

size of the sample for each group. With confidence of

95%, and a margin of error of 0.05, the sample size of

each subgroup (SATD and non-SATD) had a size of 358
unique comments each. A random subset was sampled

from each group and loaded in the survey.

• Which comments to show. Qualtrics offers advanced

randomisation with even distribution5. This allowed

fixing an “explanation” statement above each group, and

then randomly showing 16 comments of each group to

each participant. This ensured that comments would be

evenly included, obtaining a similar number of responses.

All questions were mandatory responses.

• Minimal number of responses to obtain. In order to

account for respondent’s bias, each comment had to

be classified multiple times. Aiming for a minimum

of 10 classifications per comment, the survey had to

obtain at least 204 responses. This was calculated as:

sampleSize ∗ 2[groups] ∗minResponses/surveySize.

Once loaded, the survey was distributed online in social

networks, using an anonymous link, and hashtags commonly

used by the R community. This approach ensured that

the comment analysis was done mostly by members of

the R community, with some knowledge of programming,

while obtaining repeated classifications that minimised the

respondents’ bias. The survey’s questionnaire and survey

responses are available as part of the dataset3.

5See: https://www.qualtrics.com/support/survey-platform/survey-module/bl
ock-options/question-randomization/

181

IV. STUDY RESULTS

This Section introduces the answers and key findings of

each of the research questions.

A. RQ1: SATD Frequency

In total, 164363 lines of code were manually inspected.

Out of them, 87 were found to be (totally, or partially),

written in a language different than English (specifically,

Portuguese, German and Spanish). Though the selected

packages were entirely written in English, these lines were

“internal exceptions”, a common practice among non-native

English speaking developers [18]. Those 87 lines were

disregarded, and the rest of the analysis was conducted over

the remaining 164262 English comments.

In terms of comments “demographics”, three proportions

were calculated. First, about 89.7% (exactly 147407) com-

ments were full-line comments, occupying the whole line of

the code, and not just a part of it; the remaining 16855

comments (10.3%) were partial lines. Second, out of the total,

77.% (127283 comments) were single-line -i.e. starting and

ending on the same line-, while the remaining 22.5% (or 36979

comments) were multi-line. Third and last, 87.8% (exactly

144173 comments) appeared in the R code, while only 12.2%

(20089 comments) were found in the tests suits; all of the

selected packages had test suits.

An initial set of possible groups was developed in

consultation with two expert R developers, based on

their personal experiences; this was used for the manual

classification. Table I summarises the classification statistics,

by number of comments and percentage of the total.

TABLE I
FILTERING OF COMMENTS, DIVIDED BY MULTI AND SINGLE LINE.

Multilines Single-lines
Type # Comments % # Comments %

Explanation 17170 10.45 91820 55.89
Code 7846 4.77 9832 5.98
Title 5222 3.17 15432 9.39

SATD 2043 1.24 2919 1.77
Credits 2563 1.56 978 0.59

Exceptions 582 0.35 2252 1.37
Block Closures 237 0.14 1183 0.72
Return Notes 365 0.22 1593 0.96
Example Data 315 0.19 484 0.29

Fixes 636 0.38 790 0.48

Overall, there are several “minor” classifications. Return
Notes indicate comments that explain when a function is

returning a value; while sometimes they are meaningful, most

of the time, they are not (e.g. #Return results). Block
Closures are often used to highlight the end of a block

when the function has too many nested blocks (e.g. #end
while). Credits were comments used to give credit to a

particular developer, to link to a StackOverflow post, or cite a

research paper that explained the implementation of a method.

Example Data indicated comments that explicitly indicated

data, such as a usage example or a dataset location, without

locating it in the Roxygen documentation.

Titles marked comments that mostly had strings of

characters (such as dashes, bars, hashes), used to separate

blocks of code; though without meaningful content, it

accounted for 12.56% of the comments. Fixes often pointed

to GitHub issues or errors that had been long corrected,

such as #Breaking works after escapes (#265); they

had to state that everything was fixed and working. Finally,

Exceptions were also minor comments that simply indicated

that an error was being thrown, or a warning was being written

in the console -e.g. #Warnings for illegal groupings.

The remaining three categories were considered extremely

relevant. These are:

• Code: These comment out fragments of code, and

accounted for almost 11% of the comments. Leaving

unused or outdated code in a software project is

considered a bad practice, often deemed Code Debt [19],

specifically code smells related to outdated code. These

have already been identified as a type of debt in a previous

study [20]. Examples span from a single line to full

functions being left out.

• SATD: Specific lines of comments that indicate a self-

admission of TD by stating a known bug, lack of

knowledge, displeasure of the solution, or even outlining

future actions to be taken. These accounted for 4962 lines,

representing slightly more than 3% of all lines.

• Explanations: Grouped general comments used to

explain what the code was doing, without being part

of any of the other categories. This is, as expected, the

most common type, accounting for more than 66% of the

comments, or 108990 comments.

These results were compared to other studies. For example,

Potdar and Shihab [3] obtained a 7.42% of SATD comments,

while Bavota and Russo [10] identified a varying range

between 0.2% to 2.6% of SATD comments. A range between

3.77% and 20.13% per project was also found through

an automated classification by Flisar and Podgorelec [11].

Moreover, the overall rate found in this study is also aligned

with what was reported by Maldonado and Shihab [2], Potdar

and Shihab [3]. This is quite relevant, as the programming

language or its paradigm does not appear to affect SATD

frequency of occurrence.

Findings #1.1. About 11% of the comments repre-

sented code commented out, indicating Code Debt.
Findings #1.2. SATD comments were about 3% of the

total, inline to proportions found in other studies [2, 3].

R’s paradigm or type of programming do not appear

to influence this frequency.

B. RQ2: Comments Quality

An anonymous online survey was used as a crowd-sourcing

approach to evaluate the quality of a sample of comments.

The structure and distribution of this survey were discussed

182

in Section III-C. Overall, out of a threshold of 204 responses

required, we obtained 140 complete submissions.

In terms of demographics, participants appear to be

experienced programmers, with 29.4% reporting more than

10 years of experience, and 34.3% having between 5-10

years; the remainder had between 2-5 years (close to 29%),

and only 7.2% had less than two years of experience. The

programming language experience was rated using a 5-point

Likert-scale; the most popular choices with their Likert mean

are R (Likert 3.82), Python (Likert 1.85), C/C++ (Likert

1.4) and others (Likert 2.26). Finally, regarding background
disciplines, statistics account for about 29.3% of participants,

with social sciences (about 14.6%) and computer science

(11.2%) close behind, followed by others (15.5%); moreover,

most people selected at least two disciplines.

The survey was left open for over a month, during

October/November 2020. Figure 1 uses a violin plot to

showcase how many classifications received each comment on

average; they are divided by usefulness and clarity only. As

can be seen, the majority of sampled comments received about

six responses, which was below number considered during

the planning of the sample size (see Section III-C). This may

increase the trustworthiness of the results, compensating for a

smaller sample.

Fig. 1. Frequency of assessment for all sampled comments, in terms of
Usefulness and Clarity.

Overall, Figure 2 summarises the results of the classifica-

tion, by the class of comment (SATD or non-SATD), and by

Fig. 2. Distribution of mean Likert values for all sampled comments, in terms
of Usefulness and Clarity, for each block of comments (SATD and non-SATD.y

type of evaluation (Usefulness or Clarity). As can be seen,

comments tend to have low quality, as both the usefulness

and the clarity was averaged to Likert 2: “Poor”. In general,

the mean for each type and category oscillates between 2.06

and 2.18, which is close enough to be negligible.

Several points should be discussed. Though the mean

number of obtained assessments per comment is below the

expected, the respondents declare having many years of

experience, with 63.8% of them being senior developers with

more than five years of experience. They also self-report an

above-average level of R programming, with knowledge on

other languages such as Python. This compensates the lack

of responses, as senior developers are prone to have a better

understanding of the language, having encountered this type

of comments more often than a junior developer.

From this, it can be concluded that comments inside

R packages have a low quality: they are not easily

understandable, and their clarity is also low. However,

the questionnaire was not planned to understand why
this was happening, as it focused on obtaining the first

classification. Therefore, the following work should tackle

research questions such as “why do developers consider that

the comments have such low quality?”, and “what can be

done to increase the usefulness and clarity of said comments?”.

Findings #2. Both SATD and non-SATD comments

have low quality, with “poor” (Likert 2) usefulness

and clarity, as per the assessment conducted by mostly

senior R developers.

C. RQ3: Admitted TD

From the 164k lines of code, about 4962 were identified as

SATD comments. Since the comments are written in natural

language, and they may contain technical terms specific to

data science or statistics (which may affect an automated

search using existing datasets), the comments were analysed

by manually reading each of them. As a starting point, the

classification was done using Alves et al. [19] ontology, as in

previous works [10, 11].

1) Types of Debt: The categorisation was only done at a

high level, without addressing specific smells. The types of

debt discovered, their frequency in lines of code, and the

percentage of lines is reported in Table II. In the following, the

most relevant type is described by reporting and commenting

representative SATD instances that were found; this is done

due to space limitations. The full classification is available in

the dataset3.

Code Debt. “Problems found in the source code which can
affect the legibility of the code negatively, making it difficult
to be maintained” [19]. No further classification was made in

this particular category. This decision was made due to R’s

specific paradigm, and the strong link between some smells

to OOP (e.g. the “god class” or “feature envy”). This debt

183

TABLE II
TYPES OF TD FOUND IN SATD COMMENTS.

TD Type # Lines % Total
Code 2015 40.6%
Test 784 15.8%
Defect 693 13.97%
Requirements 355 7.15%
Architecture 291 5.86%
Algorithm 276 5.56%
Design 221 4.45%
Build 160 3.22%
Usability 71 1.4%
Documentation 53 1.07%
People 21 0.42%
Versioning 21 0.42%

represents 40.6% of total comments, though about 1.81% was

present in the test suit, with the remainder in the code itself.

In terms of R code itself, some relevant examples are:

• #Such an ugly hack to format misc typed
column. The comment referred to a dataframe that often

had columns incorrectly named, causing an issue with

functions that depended on column names.

• # hacky barebones recreation of system2. The

developer was apparently having issues with a specific

system function6 and decided to duplicate the code to be

capable of altering the function behaviour, rather than to

continue addressing the importing problem.

Test Debt. “Issues which can affect the quality of testing
activities” [19]. It is possible to assume this debt is frequently

addressed due to the importance given to testing in many

communities that peer-review R packages, such as rOpenSci

[21] or BioConductor [22]. CRAN submissions do not require

tests, but they are automatically checked nonetheless. Some

relevant examples are:

• Those indicating that a test was needed. Such as #TODO:
test for the existence of objective method.

• Those indicating the inadequacy of the test suit, likely

this is only tested for walktrap, should
work for other methods.

• Comments referring to problems caused by the tests when

building the package. Examples are # why doesn’t
vcov(x) work here???.

Defect Debt. “Known defects [...] that should be fixed
but due to competing priorities and limited resources have
to be deferred to a later time” [19]. This definition was

limited only to defects related to the R package “as a

piece of software”, without including those that discussed the

algorithms’ implementation. Almost 14% of the comments

discussed defects, which is aligned with the authors survey

responses: they reported that in most cases, SATD comments

are used as self-reminders of incomplete or buggy features that

should be addressed later (see Section IV-D). Some interesting

examples are:

6See: https://www.rdocumentation.org/packages/base/versions/3.6.2/topics
/system2

• Known workarounds to ensure the system keeps

working while the bug is unfixed, such as # HACK:
Circumvents a bug in flowClust..

• Placeholders or reminders to fix a specific behaviour

after a given milestone. Examples are: # FIXME handle
this better in multicoloc.data.

• Most notoriously, it was often used to highlight places

in which the code was not behaving as it should be: #
FIXME still not quite right.

Algorithm Debt. This type of debt is not often found

on “traditional” software, but more in “research software”.

In particular, a previous work stated that “Algorithm debt
corresponds to sub-optimal implementations of algorithm
logic in deep learning frameworks. Algorithm debt can pull
down the performance of a system” [23]. This definition

was extrapolated to refer to “sub-optimal implementations

of specific algorithm logic in a data science or statistical
framework”, as it was commonly found in R packages. Though

it can be considered a sub-type of Defect Debt, it was

purposefully kept separated due to using similar words but

for a different purpose. Noteworthy examples are:

• Indicating possible defects, or logic not working as

intended. Such as #It seems this over-estimates
the truth, and also # FIXME assumes
correlation prior under srs is dbeta.

• Acknowledging possible missing features regarding

the algorithm, such as # should we estimate the
relative bias?.

• Comments discussing pre-fixed values, their fitness

or worthiness, such as # some initial values,
probably not optimal... and also # how high do
we need to set this? 1/5/10/100?.

Overall, the findings of this study correlate with others

by determining Code Debt as the most common type

[10]. Though all types of debt identified in other SATD

studies were present (namely, Requirements, Design, Defect,

Documentation and Test) [1, 2, 3, 10], the occurrences are

different in R packages. Algorithm Debt was also discovered,

in alignment with studies conducted in other research-centred

software [23].

Findings #3.1. Code debt accounts for 40% of SATD

comments. Other common types are Test, Defect and

Requirements. Algorithm Debt was also discovered,

accounting for about 5.56% of comments, in alignment

to other research-centred types of software.

2) SATD Patterns: The current approach for SATD

analysis uses 62 comment patterns determined by Potdar and

Shihab [3] obtained through a manual analysis on four OOP

systems (i.e. Eclipse, Chromium OS, ArgoUML and Apache).

Therefore, this part of the analysis implied four steps:

184

1) Finding these patterns [3] in the existing comments.

2) Distilling comments (e.g. removing symbols and stop

words), and conducting an n-gram analysis to determine

new patterns.

3) Re-assemble the “cleaned” patterns to include stop-

words again, and generate the list.

4) Manual inspection of remaining comments, in search for

less reliable, ad-hoc patterns.

First, in terms of Potdar and Shihab [3], there were

62 patterns, but only 17 were found among the R SATD

comments; none of them were present in the non-SATD

comments. Almost half of them had a single occurrence

(nine patterns), and only four were frequent: fixme (934

comments), hack (210 comments), ugly (24 comments) and

stupid (with 19 occurrences).

Second, an n-gram analysis was conducted. Comments

that already had existing patterns were not considered.

The remainder was cleaned from symbols, numbers and

stop-words, and then grouped in n-grams of one to four

words. Every set was subset three times, keeping only the

fourth quantile (i.e. the one with higher frequencies). After

that, starting from the single-word gram, every dataset was

manually analysed to determine newer patterns. In particular,

ten new (clean) patterns were defined.

Third, these patterns were search the “full comments” (the

as-is version, not the “cleaned up” of the second step), to add

additional stop words. For example, the new pattern lack
memory was converted to lack of memory. Moreover,

some patterns were detected to be written with and without

spaces in between, probably due to incorrect grammar (e.g.

workaround and work around). These patterns were

added to the list in all common variants.

The selected patterns are presented in the list below, also

available as a dataset3. From the total of SATD comments,

these patterns categorised about 59% of the samples. Due

to this being a first manual study in the R programming

domain, this classification was deemed acceptable, though

further studies and automation are considered for future works.

• Patterns from Potdar and Shihab [3] found in

SATD comments: barf, causes issue, crap,

don’t use this, fixme, hack (or hacky),

inconsistency, is problematic, kludge,

silly, stupid, take care, temporary
solution, there is a problem, trial and
error, ugly.

• Proposed and newly detected patterns (step 3): todo
(or to do, or to-do), nocov, workaround (or

work around, or work-around), hard coded (or

hard-coded, or hardcoded), old code, trick
r, lack of memory, r cmd check.

On the fourth and last step, remaining SATD comments

were manually inspected to determine additional patterns.

Though these patterns only classified about 140 lines of

comments, they complement the above set. It is worth

noticing that these require further validation. They are: can’t

do this, this should work, should work, trick
(or tricky), quick fix, it doesn’t work, and not
working.

In particular, it was detected that there is a considerable

presence of comments related to skipping automated unit

testing for a variety of reasons. This finding is aligned with

a result of a previous work that determined that R packages

have an excessive focus on coverage, but not so much

test quality [24]. Moreover, there is a strong emphasis on

circumventing CRAN checks, leading to doubt the usefulness

of such automated revision. Nonetheless, for now, the latter

remains as future work.

Findings #3.2. Only 17 out of the 62 patterns

from Potdar and Shihab [3] were found in these

comments, with most corresponding to single-word

patterns. From there, 11 new patterns have been added,

also accounting for grammatical variations.

Findings #3.3. There is a large number of SATD

comments directed at stopping the execution of

automated tests, in alignment with previous studies that

highlighted low testing quality in R packages [24].

Findings #3.4. Many SATD comments indicated they

were bypassing CRAN checks, leading to doubt the

usefulness of such automated revision.

D. RQ4: Developer’s Perspective

An anonymous online survey (A-Survey) was used to dis-

cover differences in the commenting practices of developers,

and to compare the findings of this work to the perceptions of

developers in real life. The structure and distribution of this

survey were discussed in Section III-B. Overall, 845 authors

and maintainers were identified, and 102 responses were

received, which represents a response rate of 12%, acceptable

in questionnaire-based software engineering surveys [25].

Two questions were concerned with demographics: In

terms of programming experience in R, the respondents are

deemed experts, as 47.06% declared more than 10 years of

experience, followed up by 39.22% having between 5-10 years

of experience; finally, about 12.75% had 2-5 years, with less

than 1% having less than two years. These results indicate that

the sample of practitioners was highly experienced, increasing

the reliability of the obtained results [26]. The second question

inquired about the frequency of working with other people’s
code. About 16.7% indicated “everyday”, and 27.45% said

“once a week”; after that, 38.24% reported to do it “once

a month”, and 17.65% said “once a year”. These results

are also quite positive, as they highlight that participants

are mostly highly collaborative, and therefore more prone to

having extensive experience.

In terms of questions regarding encountering and addressing

TD, Figure 3 summarises results. As can be seen, about

43% of participants find SATD at least monthly, but less

than 34% decided to address that SATD with the same

185

frequency. However, there is a large a considerable percentage

of participants (about 22.5%) that seldom do something about

the SATD they encounter. This challenges the quality of the

code of the studied R packages.

Fig. 3. Survey responses on how often developers encounter or address SATD.g y p p

Given the diversity of technical backgrounds in the R

community, a question asked “Do you know what technical

debt is?”. In response, about 55.9% replied “Yes, and I try to

minimise it in my code”, while only 8.9% stated “Yes, but

I don’t worry about it”. From the remaining 35.3%, half of

them did not know what it was, and the other half confessed

searching the term in Google before replying. These replies

give perspective when addressing the free-text answers.

Adding SATD was not enquired as a Likert scale, but as an

open-ended question only; this was to minimise the negative

impact of this question to R developers. Responses were

manually analysed and classified. Overall, 13 groups were

identified, but the five most popular are: as self reminders
(about 28.4% of comments), for future planning (close to

16.7%), to obtain a quick solution first (slightly above 12.7%)

or due to lack of knowledge or as a warning (both with

7.8% each). Regardless of the main reason, about 16.7% also

mentioned lack of time as a key reason to admit TD. Some of

the most striking comments are the following:

• “Other features prioritised higher; research software just

needs to be ‘good enough’ not perfect; research software

typically grows organically, and it is not really planned,

so new ideas come up during development a lot.”

• “The current solution is usually ‘good enough’, even

though if it’s not done the ‘right’ way. (And, the ‘you ain’t

gonna need it’ principle might suggest that the ‘quick and

dirty’ solution will suffice anyhow)”.

• “The cost of remembering is too high. Also, code my look

logically sound, but a TODO about an unfixed corner case

is a lifesaver”.

• “They do not have an elegant solution at the time of a

quick and easy fix but intend to return to the problem

later”.

When enquired about the reasons for addressing SATD

comments, the discovered topics were different. Out of 13

topics, there were five more relevant. Above 17.6% stated that

they addressed a SATD comment when the feature became
needed, while 15.7% said that it was done to improve code

quality. After that, errors becoming troublesome and having to
complete work covered about 10.8% each. Nonetheless, 12.7%

of respondents confessed not knowing what SATD comments

were completed. Some of the most relevant comments are:

• “Because they need for their own purposes to make the

code work, or to add this one feature that was planned

but not implemented”.

• “They TODO comments are addressed when there is a

pressing need to add or finalise the unfinished feature.”

• “When they reach a point, using this code in their

project(s), that they can 1) no longer rely on a workaround

or 2) the issue is directly blocking their progress on their

project”.

• “Obtained a working version and moved on to other

tasks.”

Findings in this question correspond to those of Maldonado

et al. [9]: respondents do not seem to indicate a systematic

process for addressing SATD, delaying this activity until

the last moment; they also appear to do it in an ad-hoc

manner. Overall, it was notorious that developers were prone

to address their own SATD, but not that of others unless it

became necessary.

Findings #4. Participants were highly collaborative

and experienced. Though they often encounter TD,

they rarely address it. If they do, it is delayed until

the last possible moment, and completed in an ad-hoc

manner. Most developers admit debt as a self-reminder,

or for future planning of activities. Results align with

studies in other programming paradigms.

V. IMPLICATIONS

This study has several implications for SE research and R

programming alike. To the authors’ knowledge, this is the

first paper that analyses SATD in source code comments of R

packages. Therefore, the findings help quantify and highlight

challenges and opportunities for research in the intersection

of these two areas.

Analysis of SATD in comments of R packages. This

study showed that though there are certain similarities between

OOP-centred classifications of TD and SATD, there are also

several differences that should be further enquired in future

works. First, there is a large amount (about 11%) of comments

that “comment out” code that has not been removed and

is no longer being used, which represents smells related to

outdated code for Code Debt. Further studies should focus on

understanding how long these fragments live out, why they are

commented, who introduces them, and who removes them.

Second, though most common types of debt were found

in, an in-depth study in terms of specific smells could

not be conducted due to R’s mixture of paradigms; this is

another line for future works. Along this line, Algorithm
Debt was also present in SATD comments. Its definition used

186

was adapted from its original proposal related to machine

learning frameworks [23]; there is little-to-no information on

specific smells for it, opening another door for future research.

Insight into developer’s attitudes and perceptions.
Regardless of their increased growth and popularity as a

language [27], the R community has not been thoroughly

studied. This study produced one of the first insights into

their reasoning and perception, though limited to SATD in

source comments. In correspondence to the findings of other

studies [12], developers still prefer to implement sub-optimal

solutions to deliver a minimal working product faster. Most of

them consider the addition of SATD as a “personal reminder”,

to highlight something they did not finish, or a new feature.

Finally, this translated into the admission that R developers

rarely address the TD they encounter in comments, and only

do so due to one of two reasons: either “they have time” to

do it, or it is causing a fault that halts the development.

“Transitive” quality of R packages. Overall, what has

been stated in the above implications can potentially have

a more concerning effect: the transitivity of quality and
Technical Debt. Because R is a package-based environment, it

is reasonable to hypothesise that the TD of one package (and

hence, its lower code quality) can have a negative impact in

the packages that import it (i.e. depend on it). In that case, the

quality of that first package could potentially become a threat

to the validity of the studies whose results were calculated

using it.

In addition to the former discussion, there are also several

indications of low quality and concerning TD were uncovered

in this study, that may have enabled such “transitive TD”:

1) The existence of Algorithm Debt, which may affect the

theoretical/algorithmic results given by a package.

2) A tendency to prevent the automated execution of

specific tests, due to the awareness of the unsuitability

of the test suit (in alignment to previous findings [24]).

3) A tendency to circumvent and bypass CRAN checks.

4) The perception that existing comments have low quality

in terms of Usefulness and Clarity.

Therefore, future studies could also focus on addressing the

transitivity of TD in R, as well as the reasons and effects of

the four points mentioned above.

VI. THREATS TO VALIDITY

Some threats may have influenced this empirical study—this

section discusses and overviews how they were addressed.

Internal validity. This concerns factors that can influence

the results. Given R’s unique characteristics, along with

comments written in natural language, a manual classification

was completed. Though this was done in other studies

[3], any manual process is prone to human error and

subjectivity; moreover, they were analysed by the first

author only. To alleviate this, an authors’ survey (A-Survey)

was conducted to ensure that the findings also reflected

the developers’ perspectives. In total, 845 developers were

contacted, obtaining 102 responses; this represents a response

rate over 12%, which is quite acceptable in questionnaire-

based software engineering surveys [25].

Construct validity. These concern the relationship between

theory and observation. A threat of using inline code

comments is the consistency of changes between comments

and code, as well as the use of natural language itself.

Therefore, results may be impacted by the quantity and quality

of comments in every R package. Besides, since this study

parted from the definitions of TD used in OOP, it is possible

that data science-specific types of TD were not evaluated.

However, the overall focus of this paper was to provide an

initial dataset and to highlight differences between SATD in a

different programming paradigm.

External validity. Concerns the generalisation of the

findings. This study used 503 unique packages, written by a

myriad of authors of diverse backgrounds, and analysed more

than 164k inline comments; however, these results may not

generalise to all R packages, to other programming languages,

or sources of SATD (i.e. GitHub issues). In terms of the

survey’s classification, the sampling calculation described in

Section III-C helped alleviate these problems, by considering

the confidence and error, as well as ensuring that multiple

people re-classified the same comments.

VII. CONCLUSIONS

This paper investigated self-admitted technical debt (SATD)

in source comments of R packages. To do this, it conducted a

three-part mixed-methods study to understand SATD in a new

domain: R packages. The first part mined 503 R packages from

GitHub, and manually analysed more than 164k of comments

to generate a dataset. The second part administered a crowd-

sourcing to analyse the quality of the extracted comments,

while the third part comprised a survey to address developers’

perspectives regarding SATD comments.

Overall, it was detected that about 11% of code comments

represent outdated pieces of code that are no longer used,

while additional 3% are SATD comments. Regardless of

the type of comment (SATD or non-SATD), other R

developers (mostly seniors with more than five years of

programming experience) deem comment quality as low, with

poor usefulness and clarity. The most common types of

admitted TD are Code, Test and Defect, but this study also

uncovered a considerable number of occurrences of Algorithm

Debt; the least common types are Documentation, People

and Versioning. In term of natural language patterns, of the

well-known base of 62 patterns, only 17 were found, and

11 more were proposed by completing an n-gram analysis

of the text; additional seven patterns were proposed after

a final manual inspection. Finally, R developers also report

focusing on a minimally-viable product first, and introducing

SATD comments as “self-reminders”; due to this, they seldom

address the TD they encounter.

Other general findings are the acknowledgement of

inadequate tests suits (that result in developers’ efforts for

preventing these tests from being automatically executed), as

187

well as their tendency to bypass the automated CRAN checks,

often introducing TD to do so.

Several lines of future works can be addressed. First, since

developers concluded that comments have low quality, further

studies are needed to understand why this categorisation is

happening, and what to do to increase the quality of the

comments. Second, the usefulness of CRAN checks and the

reasons that lead developers to sidestep them should also

be further inquired. Third and lastly, given R’s mixture of

paradigms, it is required to conduct further research into

specific smells for each type of debt.

ACKNOWLEDGEMENTS

Blinded for the review process.

REFERENCES

[1] E. d. S. Maldonado, E. Shihab, and N. Tsantalis, “Using natural
language processing to automatically detect self-admitted
technical debt,” IEEE Transactions on Software Engineering,
vol. 43, no. 11, pp. 1044–1062, 2017.

[2] E. Maldonado and E. Shihab, “Detecting and Quantifying
Different Types of Self-Admitted Technical Debt,” in 2015
IEEE 7th International Workshop on Managing Technical Debt
(MTD), 2015, pp. 9–15.

[3] A. Potdar and E. Shihab, “An exploratory study on self-admitted
technical debt,” in 2014 IEEE International Conference on
Software Maintenance and Evolution, 2014, pp. 91–100.

[4] G. Sierra, E. Shihab, and Y. Kamei, “A survey of Self-Admitted
Technical Debt,” Journal of Systems and Software, vol. 152,
pp. 70 – 82, 2019. [Online]. Available: http://www.sciencedir
ect.com/science/article/pii/S0164121219300457

[5] Anonymised, “Anonymised manuscript - r mapping,”
Anonymised Journal, dec 2020.

[6] A. Turcotte and J. Vitek, “Towards a Type System for R,”
in Proceedings of the 14th Workshop on Implementation,
Compilation, Optimization of Object-Oriented Languages,
Programs and Systems, ser. ICOOOLPS ’19. London, United
Kingdom: Association for Computing Machinery, Jul. 2019,
pp. 1–5. [Online]. Available: https://doi.org/10.1145/3340670.
3342426

[7] D. M. German, B. Adams, and A. E. Hassan, “The Evolution of
the R Software Ecosystem,” in 2013 17th European Conference
on Software Maintenance and Reengineering, Mar. 2013, pp.
243–252, iSSN: 1534-5351.

[8] F. Morandat, B. Hill, L. Osvald, and J. Vitek, “Evaluating
the Design of the R Language,” in ECOOP 2012 – Object-
Oriented Programming, ser. Lecture Notes in Computer
Science, J. Noble, Ed. Berlin, Heidelberg: Springer, 2012,
pp. 104–131.

[9] E. D. S. Maldonado, R. Abdalkareem, E. Shihab, and
A. Serebrenik, “An empirical study on the removal of
self-admitted technical debt,” in 2017 IEEE International
Conference on Software Maintenance and Evolution (ICSME),
2017, pp. 238–248.

[10] G. Bavota and B. Russo, “A large-scale empirical study
on self-admitted technical debt,” in Proceedings of the 13th
International Conference on Mining Software Repositories,
ser. MSR ’16. New York, NY, USA: Association for
Computing Machinery, 2016, p. 315–326. [Online]. Available:
https://doi.org/10.1145/2901739.2901742

[11] J. Flisar and V. Podgorelec, “Identification of self-admitted
technical debt using enhanced feature selection based on word
embedding,” IEEE Access, vol. 7, pp. 106 475–106 494, 2019.

[12] L. Xavier, F. Ferreira, R. Brito, and M. T. Valente, “Beyond
the code: Mining self-admitted technical debt in issue tracker
systems,” in Proceedings of the 17th International Conference
on Mining Software Repositories, ser. MSR ’20. New York, NY,
USA: Association for Computing Machinery, 2020, p. 137–146.
[Online]. Available: https://doi.org/10.1145/3379597.3387459

[13] A. Decan, T. Mens, M. Claes, and P. Grosjean, “When github
meets cran: An analysis of inter-repository package dependency
problems,” in 2016 IEEE 23rd International Conference on
Software Analysis, Evolution, and Reengineering (SANER),
vol. 1, 2016, pp. 493–504.

[14] C. Ramirez, M. Nagappan, and M. Mirakhorli, “Studying the
impact of evolution in r libraries on software engineering
research,” in 2015 IEEE 1st International Workshop on Software
Analytics (SWAN), 2015, pp. 29–30.

[15] F. Morandat, B. Hill, L. Osvald, and J. Vitek, “Evaluating the
design of the r language,” in ECOOP 2012 – Object-Oriented
Programming, J. Noble, Ed. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2012, pp. 104–131.

[16] E. Kalliamvakou, G. Gousios, K. Blincoe, L. Singer, D. M.
German, and D. Damian, “The promises and perils of mining
github,” in Proceedings of the 11th Working Conference on
Mining Software Repositories, ser. MSR 2014. New York, NY,
USA: Association for Computing Machinery, 2014, p. 92–101.
[Online]. Available: https://doi.org/10.1145/2597073.2597074

[17] H. Wickham and G. Grolemund, R for Data Science: Import,
Tidy, Transform, Visualize, and Model Data, 1st ed. O’Reilly
Media, Inc., 2017.

[18] T. Pawelka and E. Juergens, “Is this code written in english?
a study of the natural language of comments and identifiers in
practice,” in 2015 IEEE International Conference on Software
Maintenance and Evolution (ICSME), 2015, pp. 401–410.

[19] N. S. R. Alves, L. F. Ribeiro, V. Caires, T. S. Mendes, and R. O.
Spı́nola, “Towards an ontology of terms on technical debt,”
in 2014 Sixth International Workshop on Managing Technical
Debt, 2014, pp. 1–7.

[20] M. A. de Freitas Farias, J. A. Santos, M. Kalinowski,
M. Mendonça, and R. O. Spı́nola, “Investigating the identi-
fication of technical debt through code comment analysis,”
in Enterprise Information Systems, S. Hammoudi, L. A.
Maciaszek, M. M. Missikoff, O. Camp, and J. Cordeiro, Eds.
Cham: Springer International Publishing, 2017, pp. 284–309.

[21] C. Boettiger, S. Chamberlain, E. Hart, and K. Ram, “Building
Software, Building Community: Lessons from the rOpenSci
Project,” Journal of Open Research Software, vol. 3, no. 1,
p. e8, Nov. 2015, number: 1 Publisher: Ubiquity Press.
[Online]. Available: http://openresearchsoftware.metajnl.com/a
rticles/10.5334/jors.bu/

[22] R. C. Gentleman, V. J. Carey, D. M. Bates, B. Bolstad,
M. Dettling, S. Dudoit, B. Ellis, L. Gautier, Y. Ge,
J. Gentry, K. Hornik, T. Hothorn, W. Huber, S. Iacus,
R. Irizarry, F. Leisch, C. Li, M. Maechler, A. J. Rossini,
G. Sawitzki, C. Smith, G. Smyth, L. Tierney, J. Y. Yang,
and J. Zhang, “Bioconductor: open software development for
computational biology and bioinformatics,” Genome Biology,
vol. 5, no. 10, p. R80, Sep 2004. [Online]. Available:
https://doi.org/10.1186/gb-2004-5-10-r80

[23] J. Liu, Q. Huang, X. Xia, E. Shihab, D. Lo, and S. Li, “Is using
deep learning frameworks free? characterizing technical debt in
deep learning frameworks,” in Proceedings of the ACM/IEEE
42nd International Conference on Software Engineering:
Software Engineering in Society, ser. ICSE-SEIS ’20. New
York, NY, USA: Association for Computing Machinery, 2020,
p. 1–10. [Online]. Available: https://doi.org/10.1145/3377815.
3381377

[24] Anonymised, “Anonymised manuscript - unit testing,”
Anonymised Journal, dec 2020.

188

[25] J. Singer, S. E. Sim, and T. C. Lethbridge, Software
Engineering Data Collection for Field Studies. London:
Springer London, 2008, pp. 9–34. [Online]. Available:
https://doi.org/10.1007/978-1-84800-044-5 1

[26] E. Burmeister and L. M. Aitken, “Sample size: How many is
enough?” Australian Critical Care, vol. 25, no. 4, pp. 271 –
274, 2012. [Online]. Available: http://www.sciencedirect.com/
science/article/pii/S1036731412000847

[27] TIOBE, “Tiobe index - the software quality company,” 2020.
[Online]. Available: https://www.tiobe.com/tiobe-index/

189

