
Evaluating 
Unit Testing 

Practices in R

Evaluating 
Unit Testing 

Practices in R

ICSE 2021
Main Track

Dr Melina Vidoni



TO EXPLORE THE 
INTERSECTION 

OF

R

TESTING 
TECH 
DEBT

Motivation

⟶Open-source
⟶Statistical and data science focus
⟶Multiparadigm
⟶Package-based
⟶Increasing popularity

Testing Technical Debt (TTD) occurs 
due to shortcuts (non-optimal 
decisions) taken about testing.

UNIT 
TESTING

⟶No previous 
research about 
testing in R 
packages.

⟶Need to 
understand how 
testing is 
approached.

⟶Need to 
understand 
developers’ 
challenges to 
provide solutions.



RELATED WORKS

3

⟶ GitHub influences in the R ecosystem, re: distribution of packages and 
inter-repository dependencies (Decan et al., 2016)

⟶ Studying R package maintenance to explore frequency of change 
(Ramirez et al., 2015)

⟶ Evaluation of R features to understand language design (Morandat et al., 
2012).

⟶ MSR+Survey to assess the popularity of open-source GitHub Repositories, 
using stars and watches (Borges et al., 2018)

⟶ MSR+Survey to evaluate why GitHub respositories are forked (Jiang et al., 
2017)

⟶ MSR+Survey to determine TTD in Scala projects, identifying testing smells 
(Bleser et al., 2019).

⟶ Inspecting the code of R packages to create a tool that automatically 
generates unit tests; empirically evaluated only (Krikava et al., 2018).



RESEARCH QUESTIONS

4

RQ1. Are R packages well tested? To understand which testing tools 
are used in R packages, identify common practices, types of testing, 
and how unit testing tailors to a multi-paradigm language like R.

RQ2. Which are potential Testing TD weak-spots? To discover and 
understand negative practices that affect unit testing in R packages. 
The long-term goal of this is to identify testing smells.

RQ3. How do R package developers perceive unit 
testing? Part of the MSR involved collecting public 
email addresses of developers, disclosed in 
packages' files, to send them a structured survey. 
Questions aimed to understand their subjective 
perception of testing and the challenges they face.



MSR (PART 1)

5

Inclusion Criteria: The repository 
must be an R-package, 
originally posted during or after 
2010; it needs to show 
maintenance activity (commits) 
in the last two years (i.e. from 
2018). It must have a correct 
package structure, with all 
dependencies available.

Exclusion Criteria: The repository 
is an R data package, a book, or 
a personal package. The state of 
the repository is archived, 
deprecated, or outdated. It is an 
R package with scripts used in a 
book. It has incomplete or 
missing files (i.e. description, 
namespace, or readme files). It 
is a fork from another R package.



MSR (PART 1)

6



DEVS SURVEY (PART 2)

7

► Implemented in Qualtrics

► Email information removed 
to ensure anonymity of 
respondents

► Emails obtained from R 
packages “Description” file, 
field Authors@R

► 469 email addresses, 22 
emails bounded, 91 replies 
collected (19.4% response 
rate)

► Ethical Approval required 
not publishing the data set



8

Testing Quality
(RQ1, RQ2)



SUMMARY OF ANALYSIS 9

TESTING COVERAGE & RELEVANT LINES
• Classifying the package by discipline and type, according to what they stated in the Readme.md
• Automated covr analysis to compared tested lines
• Covr determined: 40% are relevant lines (only 43% are tested!)
• Average coverage: 48.6%

URLOC = UNTESTED RELEVANT LINES OF CODE
• A sub-sample was manually classified by goal
• 95% confidence, 3% error = 1416 lines
• 55.3% of URLOCs belong to non-exported functions. 
• The most representative group are specific 

alternatives (32.6%). Smelly! Not all paths are 
appropriately tested. 



SUMMARY OF ANALYSIS 10

INFORMATIVE ASSERTS
• R-script to automatically pre-classify asserts.
• 98% have a written message.
• Average message length: 3~7 words.

• Manual classification in sub-sample of 1416 messages.
• Clarity: language semantics. 40% = very clear, <20% = unclear.
• Understandability: what is being tested. ~45% are challenging to read.

ORGANISATION OF TEST FILES
• R script to crawl source code, extracting signatures of test methods, assertions and LOC position.
• Done per package, per folder, per file.
• Most repost have between 2~5.5 test files, regardless of the size of the code.
• In the above group: 3~6 test methods per test file.
• Also: 2~4 assertions in each test method.



SUMMARY OF ANALYSIS 11

TYPES OF ASSERTS
• Only 1% of developers used something that was not testthat (from the survey)
• Testthat has no @beforeall or @beforeeach equivalent. Many tests fail during variable initialisation.
• 37166 unique assertions detected => 80.2% are custom defined

• Manual study in subsample to classify in common/edge/dummy
• Only 3% are manual tests, and all of them evaluated plots
• About 82.5% of asserts evaluate common cases => few edge cases being tested



12

Devs Survey
(RQ3)



SELF REPORTED DEMOGRAPHICS
13

About half respondents have 
between 5-10 years of experience 
as R developers,

Almost 27.5% have 10+ years of R 
programming experience.

About 29.7% had between 5-10 R 
packages published,

About 23% had more than ten 
packages. 



14
TESTING CHALLENGES

Almost 16% declared lack of 
testing experience as a 

Serious/Very Serious issue, 
with similar severity regarding 

to poor documentation. 
Furthermore, almost 10% still 
face steep learning curve for 

unit testing. 

All tests are passing and you still find errors?
Close to 58% participants said this happened to 
them “more than one time", and almost 22% 
estimated “at least once"; almost 9% “did not 
remember". 



15

SUMMARY OF 
RESULTS



RQ1/RQ2: IDENTIFIED SMELLS



RQ3: DEVS’ CHALLENGES

Lack of training in developers. Besides self-reported issues 
on the survey carried out in this study, previous research 
also demonstrated that most R programmers come from 
diverse technical backgrounds not focused on 
programming [10]

Incomplete tools due to the towering number of custom 
asserts, challenges such as compatibility issues, and desired 
improvements such as better automation, test data 
generation, and comparison between testing suits. This is 
also supported by the lack of methods that could be used to 
initialise test data.



CONCLUSIONS

R package testing cannot be considered comprehensive or 
high-quality. Several reasons support this: many alternative 
paths are not being tested, there is a highly variable 
coverage, and the occurrence of manual testing.

Several TTD smells have been identified by comparing the 
results of the study to existing TTD smells classifications. 
Common smells are: inadequate and obscure unit tests, 
improper asserts, inexperienced testers, and improper test 
design.

R packages developers face numerous challenges. 
Participants of the survey self-reported a high level of 
expertise. However, they agreed on the following challenges: 
time constraints, emphasis on development rather than 
testing, poor documentation of tools, steep learning curve, 
and still finding bugs despise of having test suits with all-
passing tests.



FUTURE WORKS

1) Analysing other types of debt, like SATD.

2) What is the ideal coverage for R packages?

3) What is the impact of testing (or not 
testing) non-exported functions?

4) How to improve existing unit testing tools?



20


