s 202 Evaluatlng

Main Track wybora. e®

with, testi

‘Practices in

Dr Melina Vidoni U

—Open-source

— Statistical and data science focus
— Multiparadigm
—Package-based

—Increasing popularity

—No previous
research about
testinginR

TO EXPLORE THE packages.
INTERSECTION —Need to

understand how
OF testing is
approached.

Testing Technical Debt (TTD) occurs
due to shortcuts (non-optimal Need to

decisions) taken about testing. understand

developers’
challenges to
provide solutions.

®RMIT @

RELATED WORKS

— GitHub influences in the R ecosystem, re: distribution of packages and
inter-repository dependencies (Decan et al., 2016)

— Studying R package maintenance to explore frequency of change
(Ramirez et al,, 2015)

— Evaluation of R features to understand language design (Morandat et al,,
2012).

— MSR+Survey to assess the popularity of open-source GitHub Repositories,
using stars and watches (Borges et al., 2018)

— MSR+Survey to evaluate why GitHub respositories are forked (Jiang et al,
2017)

— MSR+Survey to determine TTD in Scala projects, identifying testing smells
(Bleser et al., 2019).

— Inspecting the code of R packages to create a tool that automatically
generates unit tests; empirically evaluated only (Krikava et al., 2018).

®RMIT @

RESEARCH QUESTIONS

RQl. Are R packages well tested? To understand which testing tools
are used in R packages, identify commmon practices, types of testing,
and how unit testing tailors to a multi-paradigm language like R.

RQ2. Which are potential Testing TD weak-spots? To discover and
understand negative practices that affect unit testing in R packages.
The long-term goal of this is to identify testing smells.

RQ3. How do R package developers perceive unit
testing? Part of the MSR involved collecting public
email addresses of developers, disclosed in
packages' files, to send them a structured survey.
Questions aimed to understand their subjective

perception of testing and the challenges they face. . RMIT 0

MSR (PART1

Inclusion Criteria: The repository
must be an R-package,
originally posted during or after
2010; it needs to show
maintenance activity (commits)
in the last two years (i.e. from
2018). It must have a correct
package structure, with all S i
dependencies available. Created on the dates >YYY-MM-DD, YYYY-MM-DD

Advanced search

Advanced options

From these owners github, atom, electron, octokit

‘Written in this language Any Language 5

Exclusion Criteria: The repository
is an R data package, a book, or
a personal package. The state of
the repository is archived,
deprecated, or outdated. It is an I e 20000
R package with scripts used in a

book. It has incomplete or

missing files (i.e. description,

namespace, or readme files). It

is a fork from another R package.

Repositories options

With this many stars 0..100, 200, >1000

®RMIT @

MSR (PART 1)

Initial Selection First Screening ing anual Backward

Check

o -132 o -96 o +0 o
repositories _} repositories k_, repositories > repositories
= 405 =273 =177 =177
TABLE 1
SECOND SCREENING FILTERING RESULTS, WITH COVR AND TESTHAT
RESULTS.
covr testthat Result Number
Yes Yes Both analysis run correctly 159
Yes Failed covr runs, but there are issues with 18
testthat
NA NA Analysis are unable to run. Empty test 45
NA Manual structure, or manual test cases 20
Error Yes Filtered. covr is unable to complete the 19
Error Failed analysis. testthat provides mixed 6
Error NA results 6

SRMIT @

DEVS SURVEY

» Implemented in Qualtrics

» Email information removed
to ensure anonymity of
respondents

» Emails obtained from R
packages “Description” file,
field Authors@R

» 469 email addresses, 22
emails bounded, 91 replies
collected (19.4% response
rate)

» Ethical Approval required
not publishing the data set

(PART 2)

TABLE II
STRUCTURE OF THE SURVEY GENERATED FOR PART II.

Question

Possible Answers

How many R packages have you
authored? (Regardless if they are in
CRAN/Bioconductor or not)

How many ycars of experience do
you have as an R programmer?

<2 packages / 2-5/ 5-10/ >10

<2 years / 2-5/5-10 / 10+ ycars

How do you test your code? [S]

What type of testing do you do?

If you usc testing packages, what
arc the names of them?
Why do you use testing packages?

Do you face the following chal-
lenges during testing? And if you
do, how serious are they?

What arc the top two things you
look for/need/would like to sce?

Manually / T don’t test / Using
testing packages

Individual Functions Only / Func-
tions Clusters / Using my package
externally / Other

Comment box

Generating or exccuting test cases
/ Creating and cvaluating results /
Analysing code coverage / Finding
bugs / Reporting bugs / Fulfilling
CRAN requirements.

Likert Scale 1-5

Comment box

Do you use coverage visualisation
tools? [S]

Name the coverage visualisation
tools that you use.

Does coverage visualisation affect
you? [S]

Did you ever have all tests passing,
but found a bug in your code? [S]

Always / Occasionally / Never
Comment box

It motivates mec / It makes me
anxious / It makes me confident in
my code / I trust my code is bug-
free / Other

Yes, at least once / Yes, more than
onc time / I don’t remember / Never

Testing Quality
(RQ1, RQ2)

S®RMIT @

TESTING COVERAGE & RELEVANT LINES

- Classifying the package by discipline and type, according to what they stated in the Readme.md
« Automated covr analysis to compared tested lines

* Covr determined: 40% are relevant lines (only 43% are tested!)

* Average coverage: 48.6%

URLOC = UNTESTED RELEVANT LINES OF CODE

* A sub-sample was manually classified by goal

* 95% confidence, 3% error = 1416 lines

+ 55.3% of URLOCs belong to non-exported functions.

+ The most representative group are specific
alternatives (32.6%). Smelly! Not all paths are
appropriately tested. L

Proportion of LOCs

I
ting
tops
ation
ing

=]

0.1-

0.0-
o s i o o
@ @ 2 @ - =
5 8 2 2 @ v

Pl

Alternati
Wran

Online

Returns and
cific

“Yariable Prepar

Spe

Status [l Exortes | NotExported

SUMMARY OF ANALYSIS P RMIT °

INFORMATIVE ASSERTS
R-script to automatically pre-classify asserts.
98% have a written message.
Average message length: 3~7 words.

=
I
—

N
f

Clarity [Likert 1-5)
bt

Manual classification in sub-sample of 1416 messages.

0.2 03 0.4

=}

'
2-
e

Clarity: language semantics. 40% = very clear, <20% = unclear. Proportion of Messages
Understandability: what is being tested. ~45% are challenging to read. urderstensabity et 5) Bl + B 2 [s 1 < 0 -

ORGANISATION OF TEST FILES
R script to crawl source code, extracting signatures of test methods, assertions and LOC position.
Done per package, per folder, per file.
Most repost have between 2~5.5 test files, regardless of the size of the code.
In the above group: 3~6 test methods per test file.
Also: 2~4 assertions in each test method.

of Repositories

l I lI I

i =4

2o0. MmN mmmm — - . -. -. -- [
1<TPF<=3 3<TPF<=6 6<TPF<=454 1< 6 < TPF <= 454

Pro|

| ERREsY SN 4<APT<198

SUMMARY OF ANALYSIS “

TYPES OF ASSERTS
Only 1% of developers used something that was not testthat (from the survey)
Testthat has no @beforeall or @beforeeach equivalent. Many tests fail during variable initialisation.
37166 unique assertions detected => 80.2% are custom defined

Manual study in subsample to classify in common/edge/dummy

Only 3% are manual tests, and all of them evaluated plots
About 82.5% of asserts evaluate common cases => few edge cases being tested

SUMMARY OF ANALYSIS P RMIT 0

Devs Survey
(RQ3)

Froportion of Respondents

=
L
1

- About half respondents have

between 5-10 years of experience
as R developers,

0.2

Almost 27.5% have 10+ years of R
rogramming experience.
- programming exp
About 29.7% had between 5-10 R
g - packages published,

= 2 packages =10 packages 2-5 packages 510 packages

Packages Published About 23% had more than ten

packages.
Experience . = 2 years . 10+ years 2-5 years . 5-10 years

SELF REPORTED DEMOGRAPHICS o

Almost 16% declared lack of uncisarTocts perers~ ofogt o [N o:
testing experience as a Time Constraints - [NOMGRN oz e
Serious/Very Serious issue, o steep Learning Curve - ofjBBR i ess 0 o
with similar severity regarding @ Poor Documentation - ofENONA o ozr R o
to poor documentation. @ Litte Support from Empioyer - [NOARM 04 R 02 S
Furthermore, almost 10% still 2 Litle ExposuretoTools- (Mo oz
face steep Iearning curve for = Lack of Experience - —
unit testing. Emphasis on Development - _

Compatiily issues - oSSR osa 0 I NG

D.EJ[] EI.IIQE [].IEEI EI.I?E 1.&]0
Proportion of Respondents
All tests are passing and you still find errors? [noopinion [l Denotface [nsignificant
Close to 58% participants said this happened to Severity T E e

them “more than one time”, and almost 22%
estimated “at least once”; almost 9% “did not
remember".

TESTING CHALLENGES SRMITQ

SUMMARY OF
RESULTS

TABLE VII
TyPES OF TTD, SMELLS, AND RESULTS SHOWCASING WEAK-SPOTS

Type Smell Reason
Inadequate Unit Tests Elevated number of relevant lines still untested (see Table III and Figure 3).
Unit Testing Many alternative paths, belonging to exported functions, are not being tested (see Figure 3).

Elevated variability of coverage between packages of the same discipline. This may indicate incomplete
or excess testing (see Figure 2).
Increased focus on testing common cases, with little focus on assessing edge cases (see Figure 7).

Obscure Unit Tests Though many asserts have messages. they are mostly unclear and not understandable (see Figure 4).
In average, there are too many asserts per test method, lowering the readability of automated testing
results (see Table IV and Figure 5).

Excessive use of custom asserts may hinder testing understandability (see Section I11-A6).

Improper Asserts Too many common cases are being tested, and few common cases are being evaluated (see Figure 7).
Excessive use of custom asserts may indicate potential issues with testing frameworks and developers
training (see Section I1I-A6).

Developers finding bugs regardless of having test suites with all test passing (see Section I1I-B2).

Exploratory Testing Inexperienced Testers Though most survey participants reported a high level of expertise (see Figure 8), their main concern
in terms of improvement for existing tools was better documentation, tutorials and examples, as well
as guides to create meaningful tests for data science. This is also supported by the indicated severity
(medium-to-high) of challenges such as steep learning curve, and poor documentation.

» Limited Test Execution About 20 papers were filtered as they included only manual testing cases, with no unit testing.

Manual Testing
About 12% of survey participants acknowledged performing only manual testing in their packages (see
Section I1I-B1).

Improper Test Design About 3% of asserts were determined to be manual, as they were always testing plots. Though the
number is small, there was also a low amount of plotting-related R packages in the selected sample. As
plotting and visualisation are vital for data science [25]. better testing tools should be developed.

RQ1/RQ2: IDENTIFIED SMELLS @ RMIT o

Lack of training in developers. Besides self-reported issues
on the survey carried out in this study, previous research
also demonstrated that most R programmers come from
diverse technical backgrounds not focused on
programming [10]

Incomplete tools due to the towering number of custom
asserts, challenges such as compatibility issues, and desired
improvements such as better automation, test data
generation, and comparison between testing suits. This is
also supported by the lack of methods that could be used to
initialise test data.

RQ3: DEVS’' CHALLENGES

R package testing cannot be considered comprehensive or
high-quality. Several reasons support this: many alternative
paths are not being tested, there is a highly variable
coverage, and the occurrence of manual testing.

Several TTD smells have been identified by comparing the
results of the study to existing TTD smells classifications.
Common smells are: inadequate and obscure unit tests,
improper asserts, inexperienced testers, and improper test

design.

R packages developers face numerous challenges.
Participants of the survey self-reported a high level of
expertise. However, they agreed on the following challenges:
time constraints, emphasis on development rather than
testing, poor documentation of tools, steep learning curve,
and still finding bugs despise of having test suits with all-
passing tests.

CONCLUSIONS

1) Analysing other types of debt, like SATD.
2) What is the ideal coverage for R packages?

3) What is the impact of testing (or not
testing) non-exported functions?

4) How to improve existing unit testing tools?

FUTURE WORKS

¥

 Thanks

