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Abstract
Self-Admitted Technical Debt (SATD) is primarily studied in Object-Oriented 
(OO) languages and traditionally commercial software. However, scientific soft-
ware coded in dynamically-typed languages such as R differs in paradigm, and the 
source code comments’ semantics are different (i.e., more aligned with algorithms 
and statistics when compared to traditional software). Additionally, many Software 
Engineering topics are understudied in scientific software development, with SATD 
detection remaining a challenge for this domain. This gap adds complexity since 
prior works determined SATD in scientific software does not adjust to many of 
the keywords identified for OO SATD, possibly hindering its automated detection. 
Therefore, we investigated how classification models (traditional machine learn-
ing, deep neural networks, and deep neural Pre-Trained Language Models (PTMs)) 
automatically detect SATD in R packages. This study aims to study the capabilities 
of these models to classify different TD types in this domain and manually ana-
lyze the causes of each in a representative sample. Our results show that PTMs (i.e., 
RoBERTa) outperform other models and work well when the number of comments 
labelled as a particular SATD type has low occurrences. We also found that some 
SATD types are more challenging to detect. We manually identified sixteen causes, 
including eight new causes detected by our study. The most common cause was fail-
ure to remember, in agreement with previous studies. These findings will help the 
R package authors automatically identify SATD in their source code and improve 
their code quality. In the future, checklists for R developers can also be developed by 
scientific communities such as rOpenSci to guarantee a higher quality of packages 
before submission.
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1  Introduction

Software practitioners strive to implement high-quality software. In both tradi-
tional (mostly Object-Oriented (OO) and commercial) and scientific software, 
they often rush to complete tasks for multiple  reasons, such as cost reduction, 
short deadlines, or even lack of knowledge (da  Silva  Maldonado et  al. 2017). 
However, the effects of these actions are even more relevant in scientific software 
since they are used to process research results in many disciplines.

‘Scientific’ and ‘traditional’ software have striking differences (Hannay et al. 
2009). Scientific software developers are versed in the domain (i.e., the science) 
and will become the end-users of the software they create (Pinto et  al. 2018). 
However, in ‘traditional’ software development (commercial applications), devel-
opers follow a specific set of requirements. Additionally, scientific software 
is aimed at understanding a problem rather than obtaining commercial benefits 
(Pinto et al. 2018; German et al. 2013). The difference between ‘traditional’ and 
‘scientific’ software is not due to the programming language’s age or name but 
the purpose of the software itself. In particular, “part of the complexity in meas-
uring the scientific software ecosystem comes from how those different pieces of 
software are brought together and recombined into workflows and assemblies" 
(Howison et  al. 2015). In package-based environments, new research software 
‘runs off’ previous software (namely, packages), and its maintainability and qual-
ity can be affected by that of the packages it relies on, thus affecting the validity 
of research results in other disciplines (Arvanitou et al. 2021). However, multiple 
issues sprout from package-based environments.

“Software engineering research has traditionally focused on studying the devel-
opment and evolution processes of individual software projects” (Decan et al. 2016), 
while the concept of package-based ecosystem goes beyond an isolated software 
querying and retrieving data from an API (Application Programming Interface). 
Prior works demonstrated that the openness and scale of package-based environ-
ments (such as R’s CRAN, Python’s PyPi, and Node.js’ npm) “lead to the spread of 
vulnerabilities through package network, making the vulnerability discovery much 
more difficult, given the heavy dependence on such packages and their potential 
security problems" (Alfadel et al. 2021). Moreover, frequent package updates (even 
to fix bugs) often bring breaking changes to the packages that depend on them, and 
packages with many dependencies eventually become unmaintainable (Mukherjee 
et al. 2021). More importantly, each package imported also brings further imports 
(known as ‘transitive dependencies’), which “need to be kept updated to prevent 
vulnerabilities and bug propagation that might endanger the whole ecosystem" 
(Mora-Cantallops et al. 2020b). Prior research found that this can be controlled by 
the community values supporting those ecosystems (Bogart et al. 2016). When com-
pared to simple, isolated APIs, package-based ecosystems are so complex that vari-
ous researchers compared software ecosystems with natural ecosystems as they also 
grow and evolve (Mora-Cantallops et al. 2020a).

There are many languages and environments for scientific computing. How-
ever, recently R has gained ubiquity in studies regarding statistical analysis and 
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mathematical modelling and has been one of the fastest-growing programming 
languages (Zanella and Liu 2020). Not only it is package-based (Pinto et  al. 
2018), but it is also multi-paradigm and with an open community that actively 
promotes creating open-source packages (Codabux et  al. 2021). In May 2021, 
R ranked 13th in the TIOBE index, which measures the popularity of program-
ming languages, reaching the highest position (8th place) in August 2020 (TIOBE 
2020). In 2021, it was ranked as the 7th most popular language by the IEEE 
Spectrum.1 Despite being a popular programming language, R developers do not 
see themselves as ‘true programmers’ and lack a formal programming education 
(German et al. 2013; Pinto et al. 2018), hence possibly prioritizing other activi-
ties over quality assurance and defect-free code.

Technical Debt (TD) is a metaphor reflecting the implied cost of additional 
rework caused by choosing an easy solution now instead of a better approach that 
would take longer (Maldonado and Shihab 2015). Self-Admitted Technical Debt 
(SATD) refers to situations where the developers are aware that the current imple-
mentation is not optimal and write comments alerting of the problems (Potdar and 
Shihab 2014). Through SATD, developers consciously perform a hack and ‘record’ 
it by adding comments as a reminder (or as an admission of guilt) (Sierra et  al. 
2019). Wehaibi et al. (2016) reported that SATD has an impact on software mainte-
nance as SATD changes are more complex than non-TD changes. Most SATD stud-
ies to date were conducted in the domain of OO software repositories (Sierra et al. 
2019; Potdar and Shihab 2014; da Silva Maldonado et al. 2017; Flisar and Podgore-
lec 2019). Vidoni (2021b) manually identified SATD comments in R packages but 
did not provide any tool to detect them automatically. SATD is understudied, espe-
cially in scientific software such as R. This contributes to a known research gap 
already recognized in multiple studies. In particular, as Storer (2017) stated, “the 
‘gap’ or ‘chasm’ between software engineering (SE) and scientific programming is 
a serious risk to the production of reliable scientific results." This gap is even more 
relevant considering that prior work on SATD in R packages demonstrated that R 
comments differ from Java, consist of different TD types, and are characterized by 
different keywords (Vidoni 2021b).

To our knowledge, there is no research on automatic detection of SATD in R, 
which is a language with striking differences compared to OO and commercial soft-
ware. Thus, this study aims to investigate the capabilities of traditional Machine 
Learning (ML), deep learning, and deep neural Pre-Trained Language Models 
(PTMs) for automatic detection of SATD in R packages. We selected techniques that 
have already been used for automated SATD detection in OO (Ren et al. 2019; Yan 
et al. 2018; Flisar and Podgorelec 2019; da Silva Maldonado et al. 2017), and com-
pared them to PTMs. The latter was chosen given they have been used to analyze 
natural language related to software (Zhang et al. 2020) but not applied to SATD. 
However, they demonstrated excellent capabilities to handle small SE-related data-
sets (Robbes and Janes 2019). We used a dataset of R source code comments pre-
viously classified into 12 TD types (Vidoni 2021b), and automatically classified it 

1  See: https://​spect​rum.​ieee.​org/​top-​progr​amming-​langu​ages-​2021.

https://spectrum.ieee.org/top-programming-languages-2021
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using several techniques to compare the performance among techniques. Addition-
ally, we conducted manual classifications to derive new and complementary data 
related to SATD characteristics.

Our findings also show that PTMs (RoBERTa model) outperform other models 
for identifying SATD types, especially when the number of comments for a SATD 
type is low (meaning, it works well even with limited training data). Note that PTMs 
have never been used in SATD detection before. Our F1 metric (a weighted average 
of precision and recall, a metric used to evaluate classifier algorithms) indicates that 
some types of SATD in R are easier to identify (Code, Test, Versioning and non-
SATD comments), while others are not (e.g., Algorithm and People). We also uncov-
ered eight new causes of SATD introduction, totaling 16. Irrespective of the TD 
type, failure to remember is the most common cause of SATD. Inconsistent com-
munication (among developers) and workarounds or hacks are also quite common.

Our main contributions are as follows:

•	 This is the first automated detection analysis of SATD in R programming, spe-
cifically for R packages.

•	 Likewise, PTMs for SATD detection have not been used before.
•	 An augmented corpus (from 8 to 16) of plausible causes of SATD, extracted 

from 1,345 comments. It expands on previously proposed categories and is pub-
licly shared.

•	 The automated detection of 12 types of SATD compared to 5 types in other 
SATD studies.

Paper Structure. Sect. 2 covers related work and how our study differentiates from 
the existing literature. Sect. 3 outlines the methodology including our research ques-
tions, data processing, experimental setup, and definitions of evaluation metrics. 
Sect. 4 presents our results. Discussions and implications are presented in Sect. 5 
followed by threats to validity in Sect. 6. We conclude our work in Sect. 7.

2 � Related work

This section covers different related work organized by areas.
General SATD Potdar and Shihab (2014) manually classified source code com-

ments to obtain 62 SATD patterns. The most common types of TD and the heuris-
tics to discover them were also investigated (Maldonado and Shihab 2015; Potdar 
and Shihab 2014). These studies were expanded upon by a large-scale automated 
replication, generating another manually classified dataset, later used in multiple 
follow up works. Bavota and Russo (2016) and da Silva Maldonado et al. (2017) 
applied Natural Language Processing (NLP) on that dataset to automatically mine 
and detect SATD occurrences in ten Open Source Projects (OSPs). They deter-
mined that Code Debt represents almost 30% of the occurrences and that spe-
cific words related to mediocre code are the best indicators of Design Debt. Flisar 
and Podgorelec (2019) created an automated prediction system to estimate SATD 
in the comments of OO software by comparing different methods (three feature 
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selection and three text classification). Fucci et al. (2021) did a manual classifica-
tion of about 1k of Java comments from the sample of (da Silva Maldonado et al. 
2017), and worked only on Defect, Design, Documentation and Implementation 
Debt, to annotate sentiments as negative and non-negative; their results deter-
mined most and concluded that comments related to functional problems tend to 
be negative. Yan et  al. (2018) investigated whether software changes introduce 
SATD by performing an empirical study on OSPs, to assess SATD at the moment 
it was admitted.

SATD was also assessed in other domains outside source code comments. Li 
et  al. (2020) identified eight TD types in issue trackers, determining that identi-
fied TD is mostly repaid, and by those that identified it or created it; however, they 
focused only on two large-scale Java projects and centred on TD occurrence rather 
than in its automated detection. Another study focused on the acquisition and min-
ing of SATD in issue trackers by pre-labelling issues in issue trackers (Xavier et al. 
2020); their goal was not to automate the identification through machine learning, 
but with process updates, and they only assessed five large-scale Java projects.

Overall, the main difference between these studies and ours is that they focused 
only on purely Object-Oriented (OO), large-scale projects mainly developed in Java. 
Moreover, none of them applied PTMs as a detection technique.

Automated SATD detection Detecting instances of SATD has been a manual or 
automatic process, but we present works on the latter. Ren et  al. (2019) proposed 
a Convolutional Neural Network (CNN) to classify source code comments as 
SATD and non-SATD, using an existing dataset (Maldonado and Shihab 2015) and 
extracted more comprehensive and diverse SATD patterns than the manual extrac-
tion. Zampetti et al. (2020) used a manual classification of SATD removal dataset 
(Zampetti et  al. 2018) to remove SATD automatically using CNN and Recurrent 
Neural Network (RNN) and reported that their work outperforms the human base-
line. Santos et  al. (2020) performed a controlled experiment using a Long Short-
Term Memory (LSTM) neural network model combined with Word2vec to detect 
Design and Requirement SATD using the existing datasets (Maldonado and Shihab 
2015; da Silva Maldonado et al. 2017), and detected that it improved recall and F1 
measures. Wattanakriengkrai et  al. (2018) focused on Design and Requirements 
SATD, using N-gram Inverse Document Frequency and feature selection and experi-
mented with 15 ML classification algorithms using the ‘auto-sklearn’ for automated 
SATD detection, and obtained better outcomes in detecting Design Debt. Maipradit 
et al. (2020a) used N-gram feature extraction and ‘auto-sklearn’ to identify instances 
of “on-hold" SATD; namely, developers’ comments about holding off further imple-
mentation work due to factors they cannot control. These authors confirmed their 
approach as positive to find instances of on-hold SATD, but did not consider TD-
types, instead working with a simple binary detection.

Other studies employed plain text mining (Huang et  al. 2018; Liu et  al. 2018; 
Mensah et al. 2016). Most used NLP on a manually labeled dataset to automate the 
SATD detection process. However, Flisar and Podgorelec (2018) used an unlabeled 
dataset of OSPs and word embeddings for automated SATD detection for a binary 
(SATD and non-SATD) classification, obtaining about 82% of correct predictions 
for SATD.
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Regarding SATD mined from areas outside source code comments, in a recent 
work, Rantala and Mäntylä (2020) also worked atop a previously labeled dataset, 
used logistic Lasso regression to select predictor words in a bag-of-words approach; 
like all previous papers, they did not consider PTMs and only used the same large-
scale Java projects from Maldonado and Shihab (2015). Finally, (AlOmar et  al. 
2022) provided a tool called SATDBailiff to automated SATD detection, based on a 
prior plugin (Liu et al. 2018); like before, the model was constructed by reusing the 
same Java projects reused in multiple studies and did not consider the application of 
BERT.

R programming Few studies focus on software engineering for R, creating a 
gap in research. A mining study explored how the use of GitHub influences the R 
ecosystem regarding the distribution of R packages and for inter-repository pack-
age dependencies (Decan et al. 2016). In terms of programming theory, Morandat 
et al. (2012) assessed the success of different R features to evaluate the fundamen-
tal choices behind the language design. These studies focus on dependency man-
agement and language design choices for R programming, but not TD. A mixed-
methods Mining Software Repositories (MSR) study combined the exploration of 
GitHub repositories and developers’ survey to assess Test Debt in R packages (Vid-
oni 2021a), determining a significant presence of Test Debt smells. This semi-auto-
mated approach did not apply ML techniques, using only pre-existing testing tools. 
Codabux et al. (2021) explored the peer-review process of rOpenSci and proposed a 
taxonomy of TD catered to R packages, determining that reviewers report Documen-
tation Debt issues the most. However, it was a manual classification using card sort-
ing. Finally, Vidoni (2021b) used a mixed-methods MSR study and explored 164K 
comments to determine the existence of SATD in R-packages. It was mostly manual, 
and its datasets were used as a baseline in this study. However, this dataset generated 
was not linked to package names, to preserve the identity of the survey participants 
(as requested by the corresponding Ethical Approval).

Differences and novelty All automated SATD studies have been conducted on 
OO software and languages, many reusing the same dataset (Maldonado and Shihab 
2015). Our study is distinctive because we explore SATD in scientific software, spe-
cifically R packages. Research regarding the identification or automation of SATD 
in scientific software, especially in R programming, is scarce. This contributes to 
one of the main novelties of this paper. As a result, we are contextualizing our work 
regarding other works in different domains.

R programming is innately different in terms of paradigm and construction 
(being dynamically-typed, derived from S, and package-based) and used for varied 
purposes (Storer 2017). However, scientific software cannot be compared to open-
source development regarding the money spent on a project (Ahalt et al. 2014), the 
contributors’ technical background (German et al. 2013; Pinto et al. 2018), and their 
formation (e.g., in scientific software, juniors contribute the most, and there are 
scarce third-party contributors) (Milewicz et al. 2019). Therefore, this study focused 
on an underdeveloped domain of knowledge.

As seen in the related work, most SATD automation has been done repeatedly 
on the same Java projects studied in the seminal SATD paper, regardless of it being 
over five years old. Research regarding the identification or automation of SATD in 
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scientific software, especially in R programming, is scarce. This contributes to one 
of the main novelties of this paper. As a result, we are contextualizing our investiga-
tion regarding other works in different domains.

Besides, existing studies on SATD in R did not cover automated techniques for 
its analysis (Codabux et  al. 2021; Vidoni 2021b). Current SATD studies focus on 
ML or neural networks separately, without performing inter-algorithm comparisons. 
We conducted experiments on the three most-used ML algorithms, CNN, and PTM. 
Using PTM for the detection of SATD or SATD types has never been explored pre-
viously but were reported to be excellent for natural language processing in other 
areas of software engineering (Robbes and Janes 2019; Zhang et  al. 2020). One 
study used BERT as the encoder template to remove obsolete to-do comments 
(which are a limited piece of the SATD spectrum of comments) from OO open-
source code (Gao et al. 2021). Therefore, our study presents a more extensive usage, 
as it also compares two different BERTs.

Existing studies automate SATD versus non-SATD comments detection or focus 
on particular SATD types (e.g., Requirements). Our key difference is that we studied 
the detection of SATD automatically and investigated the efficiency of algorithms 
for the automatic detection of 12 types of SATD in R. Additionally, using those 
results, we assessed the causes of SATD from previous works in the OO domain 
(Mensah et al. 2018) and built on that to expand the corpus of causes.

3 � Methodology

This section describes our goal, research questions, and the methodology used for 
our study.

3.1 � Goal and research questions

This study aimed to automate the process of identifying SATD types by comparing 
available algorithms. The main aim is to determine SATD’s plausible causes in R to 
enable the future development of tools to assist R developers. Thus, the following 
Research Questions (RQs) were pursued.

RQ1: Which technique has the best performance to extract SATD in R packages 
automatically? SATD in R packages is different than in OO. In prior studies, new 
keywords were uncovered for SATD in R compared to OO. (Vidoni 2021b; Codabux 
et al. 2021). Moreover, surveys confirmed R developers use source code comments 
differently, with a focus on TO-DO lists, rather than explaining the behaviour (Pinto 
et al. 2018). Moreover, there are specific SATD types that do not appear in OO (e.g., 
Algorithm Debt), and the distribution of occurrences is different (Vidoni 2021b). 
We explored the performance of techniques previously used for SATD detection and 
PTMs for identifying whether a comment in an R package is SATD or not. This 
question was used as a preliminary step to set the groundwork needed to answer 
the other RQs. Although using some of these algorithms for SATD detection is not 
novel, doing so for R packages and scientific software is.
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RQ2: Which technique has the best performance in identifying different SATD 
types? Previous studies (Vidoni 2021b; Codabux et  al. 2021) classified SATD in 
R packages as 12 different types, albeit manually or through semi-automated 
approaches. We were interested in determining which technique in RQ1 can classify 
the comments into different SATD types with the best performance. The goal of this 
question is to lay foundational grounds for future works.

RQ3: What are the causes leading to the occurrences of SATD in R packages? 
We explored why SATD occurs and what causes can be extracted from the com-
ments. These are analyzed through hybrid card-sorting, starting with the categories 
defined by prior works (Mensah et al. 2018). We included all SATD types, unlike 
prior research, which focused mainly on a few (e.g., Code, Test, Design, Defect) 
(Ren et al. 2019; Zampetti et al. 2020; Wattanakriengkrai et al. 2018; Huang et al. 
2018; Liu et al. 2018; Mensah et al. 2016).

3.2 � Data preparation

This section describes the dataset, pre-processing steps, and methodology for clas-
sifying and identifying SATD causes. This process is depicted in Fig. 1, indicating 
which steps contributed to each RQ.

3.2.1 � Dataset collection

The anonymized datasets we used were extracted and classified by a previous study 
(Vidoni 2021b), who mined 503 repositories of R packages publicly available on 
GitHub to extract source code comments (excluding documentation comments). 
Therefore, the datasets only contain source code comments. However, given that this 
was a mixed-methods study, the names of the packages mined were not distributed 
to protect the anonymity of the survey participants; this decision was enforced by 
the corresponding Ethical Approval, which translates to this current work. However, 
given the rigorous mining and labelling process, this dataset does not threaten the 
validity of this study. Since R does not have multi-line comments, Vidoni (2021b) 
used an R script was used to merge comments of several subsequent lines. Data-
set D1 is the result of a semi-automated classification of 164,261 comments. These 
comments are labelled and grouped into: SATD (about 4,962 instances) and non-
SATD (159,299).

Commented-out code is source code which simply has a comment marker at 
the front, hence making it non-compilable/non-interpretable, and is not natural 

Fig. 1   Process of SATD detection and identifying causes of SATD types
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language. Because of these intrinsic characteristics, one of the seminal works 
regarding SATD considered that commented-out code should be ignored as it 
“generally does not contain self-admitted technical debt" (da  Silva  Maldonado 
et al. 2017). This claim was also supported by prior studies (Potdar and Shihab 
2014). Recent works have concluded that some commented-out code may be 
linked to ‘on-hold’ SATD (namely, implementations halted due to conditions out-
side of their scope of work) (Maipradit et al. 2020a), which is a different area of 
study and outside of the scope of this work.

As a result, since a percentage of our non-SATD sample were ‘commented-out’ 
code, we removed these comments, keeping 141,621 non-SATD comments used 
to answer RQ1 alongside the SATD comments. When removing the commented-
out code, we also excluded the natural-language comments that appeared inside 
the block of commented-out code; the rationale for doing this was that these com-
ments refer to no-longer-active code and would therefore provide incorrect statis-
tics for our analysis. However, the threat of missing important information about 
the code’s current state was negligible.

Though the dataset from Vidoni (2021b) does not name packages, their char-
acteristics are known, given the description of their inclusion/exclusion criteria. 
D1 is composed of packages published in/after, updated during/after 2018. These 
packages are public, open-source and have a minimal package structure (follow-
ing CRAN’s suggestions). A filtering step excluded personal repositories, depre-
cated/archived/non-maintained packages, data packages, and collections of teach-
ing exercises or packages. The process was iterative, using control packages (e.g., 
pkgdown, ggally, roxygen2) to refine the selection.

D2 is the SATD subset from D1 . It was classified and verified by Vidoni (2021b) 
using existing taxonomies into different types of TD; this was done by reading the 
comment for the related line of code. It typified the comments into Algorithm, 
Architecture, Build, Code, Defect, Design, Documentation, People, Requirements, 
Test, Usability, and Versioning Debt. Their definitions are summarised in Table 1; 
note that R had definitions adjusted by Codabux et al. (2021), hence why some 
types make specific clarifications.

However, the D2 dataset only included comments labelled as SATD, and we 
needed to determine the best technique for SATD classification among non-SATD 
(for RQ1). Therefore, we also wanted to detect non-SATD. To perform such an 
assessment, we randomly selected and added 2008 non-SATD samples from D1 
when conducting the experiments for RQ2, in order to have a sample of non-
SATD to train the classifiers; this number was representative and calculated with 
95% confidence and 5% error (using as population the whole of non-SATD com-
ments, sans the commented-out code).

For RQ2, we added the non-SATD comments to evaluate the ability of the 
models for classification of types. However, as the recall and precision scores 
of the models are not 100%, meaning that there are cases of False Negative and 
False Positive (See Sect. 3.4 for definitions), we decided to add non-SATD com-
ments in RQ2. Therefore, the models are evaluated when classifying different 
types of SATD and the non-SATD comments.
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The number of non-SATD comments was selected to approximately match the 
number of comments in the SATD type with the highest number of comments in the 
dataset (namely, the most ‘common’ TD type). Therefore, the resulting dataset can 
reflect the ability of the models in a more realistic setting, as SATD and non-SATD 

Table 1   Taxonomy TD definitions, based on (Codabux et al. 2021)

Debt type Definition

Architecture Refers to the problems encountered in product architecture, for example, violation of 
modularity, which can affect architectural requirements (e.g. performance, robust-
ness)

Build Refers to issues that make the build task harder and unnecessarily time-consuming. 
The build process can involve code that does not contribute to value to the customer. 
Moreover, if the build process needs to run ill-defined dependencies, the process 
becomes unnecessarily slow. When this occurs, one can identify Build Debt. In the 
context of R, Build TD encompasses anything related to Travis, Codcov.io, GitHub 
Actions, CI, AppVeyor, CRAN, CMD

Code Refers to the problems found in the source code that can negatively affect the legibility 
of the code, making it more difficult to maintain. Usually, this TD can be identified 
by examining the source code for issues related to bad coding practices. In the con-
text of R, code debt encompasses anything related to renaming classes and functions, 
← and =, parameters and arguments in functions, FALSE/TRUE vs F/T, print vs 
warning/message

Defect Refers to known defects, usually identified by testing activities or by the user and 
reported on bug tracking systems

Design Refers to debt that can be discovered by analyzing the source code and identifying 
violations of the principles of good object-oriented design (e.g. very large or tightly 
coupled classes). In the context of R, design debt encompasses anything related to 
S3 classes and S4 methods, exporting functions with @export or the name pattern 
(visibility), internal functions with coupling issues, location of functions in the same 
file, selective importing @import (whole package) or @importFrom (a specific 
function), notations :: and :::, returning objects (dataframes or tibbles), and 
Tidyverse vs. baseR

Documentation Refers to the problems found in software project documentation and can be identified 
by looking for missing, inadequate, or incomplete documentation. In the context of 
R, documentation debt encompasses anything related to Roxygen2 (e.g., @param @
return, @example), Pkgdown, Readme files, and Vignettes

Requirements Refers to trade-offs made concerning what requirements the development team needs 
to implement or how to implement them. Some examples of this type of debt are: 
requirements that are only partially implemented, requirements that are implemented 
but not for all cases, requirements that are implemented but in a way that does not 
fully satisfy all the non-functional requirements (e.g. security, performance)

Test Refers to issues found in testing activities that can affect the quality of those activi-
ties. Examples of this type of debt are planned tests that were not run, or known 
deficiencies in the test suite (e.g. low code coverage). In the context of R, test debt 
encompasses anything related to coverage, covr, unit testing (e.g., testthat), and 
test automation

Usability Refers to inappropriate usability decisions that must be adjusted later. Examples of this 
debt are the lack of usability standards and inconsistency among navigational aspects 
of the software. In the context of R, this encompasses anything related to usability, 
interfaces, visualization, and so on

Versioning Refers to problems in source code versioning, such as unnecessary code forks
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are often blended in a dataset (i.e., a source code file can contain multiple and 
diverse instances of each). We did not consider a higher number of non-SATD com-
ments in RQ2 as in RQ1, we study the models’ capabilities to classify the SATD 
and non-SATD comments. As non-SATD comments cannot be detected by the mod-
els completely, and because the number of non-SATD comments is higher, we kept 
the number of non-SATD comments in RQ2 similar to the number of comments in 
the SATD type with the highest number of comments in the dataset to generate a 
balanced dataset. The statistics of the original dataset without the added non-SATD 
group are summarized in Table 2.

As mentioned, the dataset included comments from 503 R packages but the pro-
jects’ information was removed by its authors to protect the package developers’ pri-
vacy. Therefore, we cannot conduct analysis using within-project and cross-project 
settings like Wang et al. (2020).

3.2.2 � Pre‑processing

Following the previous studies on SATD (Flisar and Podgorelec 2019; da Silva Mal-
donado et  al. 2017; Bavota and Russo 2016; Maldonado and Shihab 2015), we 
removed the punctuation from the comments, leaving exclamation and question 
marks (! and ?, respectively) since these are shown to be helpful in SATD detec-
tion. All tokens were converted to lowercase, and we applied lemmatization using 
the Spacy library2, as previously done in (Huang et al. 2018). Lemmatization was 
used to reduce the number of features when multiple formats of the same word 
(especially verbs) appeared in the comments, e.g., the word ‘do’ is used for all the 
variations ‘done,’ ‘did,’ and ‘doing.’

Table 2   Statistics of dataset D
2
 

(Vidoni 2021b)
Abbr. TD Type # of Comments % Total

CD Code 2015 40.6
UT Test 784 15.8
DF Defect 693 13.97
REQ Requirements 355 7.15
AR Architecture 291 5.86
AL Algorithm 276 5.56
DS Design 221 4.45
BU Build 160 3.22
US Usability 71 1.4
DOC Documentation 53 1.07
PP People 21 0.42
VC Versioning 21 0.42

2  https://​spacy.​io/

https://spacy.io/
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Following the literature, we also removed stop words using the NLTK library, 3 
but keeping the words mentioned in Huang et al. (2018); these are repetitive words 
such as ‘as’ and ‘the’ and are considered as noise features, especially when training 
ML models.

Eight comments from dataset D2 and 181 comments from dataset D1 were 
removed following these steps because they resulted in null (empty comment) after 
the stopword removals. Following the literature (da  Silva  Maldonado et  al. 2017; 
Maldonado and Shihab 2015), we keep duplicate comments of each type, as they 
were associated with different code snippets. Two authors manually inspected the 
eight duplicate comments, alongside ten correctly cleaned, and assessed them 
regarding the original versions. This check was done to determine whether the 
removal was too aggressive. Both authors concluded in favour of the process–the 
comments had mostly filler symbols and were initially too short. There was no inter-
rater agreement because the sample size was small (< 10).

3.2.3 � Selected classifiers

We applied three main techniques to compare the results for both binary classifica-
tion ( D1 ) and multi-class classification ( D2 ): i) traditional ML techniques, ii) deep 
neural networks, and iii) pre-trained neural language models (PTMs). In the first cat-
egory, we used Max Entropy (ME), Support Vector Machine (SVM), and Logistic 
Regression (LR) classifiers. We applied a CNN and two PTM models (ALBERT 
and RoBERTa) as classification techniques for the second and third categories.

Max Entropy classifier is one of the first techniques in the literature for identify-
ing SATD (da Silva Maldonado et al. 2017). This classifier is an ML model that ena-
bles multi-class classification and produces a probability distribution over different 
classes for each dataset item (Manning and Klein 2003). We chose SVM and Logis-
tic Regression (LR) techniques since they are well-known classifiers for text clas-
sification and software engineering studies, including SATD detection (Kaur et al. 
2017; Krishnaveni et al. 2020; Setyawan et al. 2018; Arya et al. 2019; da Silva Mal-
donado et al. 2017).

The number of studies applying neural network-based techniques for SATD 
detection is limited, and they often use either an RNN or LSTM architecture (Santos 
et al. 2020; Zampetti et al. 2018). Ren et al. (2019) applied CNN to identify SATD 
or non-SATD comments (Ren et al. 2019), while Wang et al. (2020) used attention-
based Bi-LSTM. Among these, we chose the CNN approach for both datasets. The 
attention-based Bi-LSTM technique is not used here, as we ran two Transformer 
based models, which use attention mechanisms. This architecture has shown signifi-
cant improvements over LSTM and RNN in many NLP areas, including classifica-
tion tasks (Jiang et al. 2019; Naseem et al. 2020). The most recent SATD detection 
technique is from Wang et al. (2020), but it is not open-source, thereby hindering its 
use as a baseline algorithm.

3  https://​www.​nltk.​org/

https://www.nltk.org/
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In the third category, PTMs are language models trained on a substantial general-
purpose corpus (e.g., book-corpus and wiki-documents) in an unsupervised manner 
to learn the context. Then, they are fine-tuned for downstream tasks (e.g., text clas-
sification, sentiment analysis) (Devlin et al. 2019; Liu et al. 2019). PTMs are known 
to reduce the effort and data required to build models from scratch for each of the 
downstream tasks separately (Liu et al. 2019) due to transferring the knowledge they 
have to other tasks. Therefore, we selected the following PTMs:

•	 ALBERT is a BERT self-supervised learning of language representation (Lan 
et  al. 2020). The main reason for choosing ALBERT among other models is 
because it is a Transformer-based model. ALBERT is a lighter model, increas-
ing the training speed of its base model BERT while lowering the memory con-
sumption (Lan et al. 2020; Minaee et al. 2020). These are the main characteris-
tics required to reduce the time required for training in the software engineering 
domain.

•	 RoBERTa stands for ‘robustly optimized BERT approach,’ which modified the 
pretraining steps of BERT (Devlin et al. 2019), outperforming all of its previous 
approaches to the classification tasks (Liu et al. 2019). RoBERTa is pre-trained 
on a dataset with longer sequences, making it a good candidate for our classifica-
tion.

These models are based on the Transformer architecture, which uses attention mech-
anism (Devlin et al. 2019). This architecture is state of the art for many NLP tasks 
(Minaee et al. 2020) and has found its way into software engineering (Ahmad et al. 
2020; Wang et al. 2019; You et al. 2019; Fan et al. 2018). ALBERT and RoBERTa 
have been previously used in the software engineering domain for sentiment classi-
fication (Zhang et al. 2020; Robbes and Janes 2019), and multiple text classification 
tasks for NLP (Minaee et al. 2020). However, they have not yet been used for SATD 
detection (or its classification into types), beyond the removal and detection of to-do 
comments (Gao et al. 2021). Therefore, we were interested in evaluating their abil-
ity to classify different types of SATD in the R packages, especially since we have 
a small number of labelled data for some TD types, and PTMs have proven excep-
tional for such cases (Liu et al. 2019).

3.3 � Experimental setup

We experimented with balancing techniques using Synthetic Minority Oversam-
pling Technique (SMOTE) (Chawla et al. 2002). Since the results of the ML clas-
sifiers for the balanced data using SMOTE decreased significantly compared to the 
imbalanced dataset, we did not use oversampling, but Weighted Cross-Entropy Loss 
(Phan and Yamamoto 2020; Wang et al. 2020). Cross-Entropy Loss is a general loss 
function in deep learning approaches to perform classification tasks since it shows 
better performance than other loss functions such as Mean Square Error (Zhang 
and Sabuncu 2018). However, for our imbalanced dataset, it might not have been 
optimal to use general Cross-Entropy Loss because the model’s training would have 
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been inefficient, leading to the model learning useless information (Lin et al. 2020). 
Moreover, the loss function does not consider the frequency of different labels 
within the dataset since it treats loss equally for each label (Phan and Yamamoto 
2020).

Therefore, to handle our case of imbalanced data, we applied Weighted Cross-
Entropy Loss (Lin et al. 2020; Phan and Yamamoto 2020; Cui et al. 2019), which 
had been used previously for SATD detection (Wang et  al. 2020). This method 
assigns weights to each label. Through this approach, the minority classes (those 
with less data) are given higher weights, and the majority classes (those with more 
data) get lower weights (Phan and Yamamoto 2020). Higher weights assigned to 
minority classes heavily penalize its misclassification, and the gradients are modi-
fied accordingly to accommodate minority classes. We used the class weights for 
traditional ML techniques to replicate this behavior in the other techniques we chose 
(e.g., SVM). The class weights parameters of the models are used to handle the data 
imbalance in the dataset. Class weights penalize the incorrect prediction made for 
a class/category A in proportion to the weight assigned to that class. Therefore, a 
high-class weight assigned to a category would penalize the mistakes more. The 
class weight for each class/category is set to the inverse of its frequency (i.e., their 
occurrence) in the dataset. Hence, the minority classes are assigned higher class 
weight values and would penalize the model more when an incorrect prediction is 
made for the minority class. This prevents the model from simply predicting the 
majority classes with high accuracy due to their higher number of samples in the 
dataset and prevents the model from overfitting.

For training the models, we applied weighted loss. First, we tune the hyperpa-
rameters of the models by splitting the data into 70% training, 10% validation, and 
20% test. Then, we split the dataset into 80% train and 20% test sets to calculate the 
precision and recall values used to compare the performance of each algorithm (as 
needed for RQ1). Moreover, this also mitigated the chance of overfitting. To reduce 
the bias and variance related to the test set due to splitting both datasets D1 and D2 , 
we used an alternate k-fold cross-validation technique called stratified k-fold cross-
validation (Forman and Scholz 2010; Haibo He 2013).

K-fold cross-validation is a more rigorous approach for classification tasks, often 
used in software engineering (Zhang et  al. 2020; Novielli et  al. 2018). In k-fold 
cross-validation, dataset Dt is divided into k folds D1

t
 , ..., Dk

t
 , with equally-sized divi-

sions. K classifiers ci are trained each time using one fold as test set, and the others 
are used as training set. Therefore, each split Di

t
 is used as a test set once. Therefore, 

we will have k different performances on test sets. The stratified k-fold cross-vali-
dation is a common technique that reduces the experimental variance and creates 
an easier baseline to identify the best method when different models are compared 
together (Forman and Scholz 2010). This is similar to k-fold cross-validation, but 
the examples distribution for each class is maintained in each Di

t
 split.

In particular, we considered k = 5 , since this value has test error estimates with-
out high bias or high variance, as disclosed by James et al. (2013). We also evalu-
ated the methods with k = 10 since it has been used on prior works dealing with 
machine learning approaches to detect TD indicators (Siavvas et al. 2020; Cruz et al. 
2020; Cunha et al. 2020). Therefore, for each dataset, we trained five classifiers for 
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each classification method and each DNN and each pre-trained model and reported 
their average evaluation metrics as explained in Sect. 3.4. All experiments ran on a 
Linux machine with Intel 2.21 GHz CPU and 16G memory and used each model’s 
publicly available source code.

We tested multiple features to train the SVM and LR, including Term-Frequency 
Inverse Document Frequency (TF-IDF), Count Vectorizer, and neural word embed-
dings. However, the Count Vectorizer performed better than TF-IDF in both cases. 
We also experimented with unigram, bigram, and trigram independently to choose 
features, but the unigram-bigram combination gave the best results as reported in 
this study.

Moreover, we experimented with multiple settings to train the CNN since the lit-
erature was scarce for SATD. The best results are reported here. We trained the CNN 
with 30, 50, and 100 epochs and used 0.3, 0.5, and 0.7 dropout values and 32, 64, 
and 128 batch sizes. The final setting was 50 epochs, 0.5 dropout value, and 64 for 
the batch size. We experimented with ALBERT-based and RoBERTa-based models, 
each with 12 encoder layers. To fine-tune it to our dataset, we used the Hugging-
Face library4 along with training and validation losses to ensure the models were 
not overfitting nor underfitting (the latter for the deep learning models). The training 
data used for training ML techniques was also used in the fine-tuning.

Finally, following previous works (da Silva Maldonado et al. 2017; Bavota and 
Russo 2016), we conducted the manual analysis on the documents that are identi-
fied to include the words most contributing to a SATD type (instead of the whole 
dataset). In machine learning algorithms, the contributing words to each SATD 
class, and thus the documents containing them, can be extracted using the features’ 
weights in the algorithm. However, finding the words that have the highest contri-
bution for each of the SATD type classes is not straightforward in deep learning 
models. To accomplish this, we extracted the attention values from the RoBERTa 
model, used to score the comments in each class for RQ3. HuggingFace provides a 
sequence classification head on top of the pooled output, which is the hidden state 
of the first token of the sequence, processed by a classification head that is a linear 
neural layer. To calculate the importance of the tokens, we extracted the attention 
scores for each unique token in the train set, choosing the last layer from the stack 
of encoders because it is the same layer used by the classification head. Inside the 
encoder, each layer consists of 12 attention-heads. Therefore, to incorporate infor-
mation from all the heads, we added the attention value of a unique token from each 
attention-head, assigning it to the unique token. We repeated this process for all the 
training samples and obtained the values for each token.

The tokens with the highest attention score during the fine-tuning of the model 
helped understand which tokens encoded important information to classify each 
type (namely, identifying meaningful keywords per type). Therefore, these values 
were used to rank the comments for each class of interest and are further discussed 
in Sect.  3.5. Attention values were collected independently for each SATD type 
using their respective datasets.

4  https://​huggi​ngface.​co/

https://huggingface.co/
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3.4 � Evaluation metrics

The following metrics were used in the classification.
Precision (P) Precision divides the number of records predicted correctly to belong 

to a class (TP) by the total number of observations that are predicted in that class by the 
classifier (TP + FP): P =

TP

TP+FP
 . Here, TP means True Positive, and FP means False 

Positive (i.e., the number of observations incorrectly predicted to belong to a class). In 
multi-class classification, the FP for each class C is the total number of records with 
other labels that the classifier predicted to belong to class C.

Recall (R) Recall is calculated by dividing the number of observations correctly pre-
dicted to belong to class C (TP) by the total number of records in the corresponding 
class: R =

TP

TP+FN
 . Like before, FN stands for False Negative, representing the number 

of records in a class that the classifier incorrectly predicted to belong to other classes.
F1-Score (F1) The F1-Score is computed as F1 =

2⋅(P⋅R)

P+R
 . It shows the weighted 

average of Precision and Recall. As we used 5-fold cross-validation for RQ1, we 
reported the average scores for each of the P, R, and F1 scores over the k = 5 
classifiers:

where for Dt , F1(i) is the performance of classifier c(i) on test set Dt
(i) . Likewise, the 

average of Pavg and Ravg were reported.
For multi-class classifiers (RQ2), especially with imbalanced data, we used micro-

average and macro-average metrics of P, R and F1 scores. The micro-average weights 
the contribution of the class with the predominant number of records. The macro-aver-
age takes the average of the scores for each class and weights them equally in the final 
score. The micro- and macro-average Precision are calculated as follows:

TPj and FPj are the number of TP and FP for the j-th class. Pj is the precision com-
puted for class j and m is the number of classes. Similar calculations led to the micro 
average and macro average of Recall and F1-score, denoted as Rmicro , Rmacro , F1micro , 
and F1macro . For the stratified 5-fold cross-validation, we report the averages of these 
metrics over the k = 5 classifiers, calculated as follows:

(1)F1avg = 1∕k

k
∑

n=1

F1(i)

(2)Pmicro =

∑m

j=1
TPj

∑m

j=1
TPj +

∑m

j=1
FPj

(3)Pmacro =

∑m

j=1
Pj

m

(4)F1avgmicro =1∕k

k
∑

n=1

F1micro(i)
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For dataset Dt , the F1micro
(i) and F1macro

(i) are the performance of classifier c(i) on test 
set Dt

(i) . Similar calculations were done to compute Pavg
micro , Pavg

macro , Ravg
micro , and 

Ravg
macro.

Following Zhang et al. (2020), we considered a model to have better performance 
on Dt if it had higher values in both F1avgmicro and F1avgmacro scores.

3.5 � Manual analysis

This section discusses the required sample size calculation and the classifications 
used.

3.5.1 � Sample size calculation

We used the results of RQ1 and RQ2 to determine the technique that outperforms 
other models when classifying comments in R packages. Based on the results, we 
manually identified the causes for SATD introduction (for RQ3) from dataset D2 , 
including different SATD types. For the ML techniques, we followed prior works 
(Flisar and Podgorelec 2019; Mensah et al. 2018). The most contributing features 
(keywords) for each type were extracted using the model’s results, i.e., those with 
the highest weights in each class of interest (i.e., SATD type). Then, we extracted the 
comments that had those features/keywords. For dataset D2 , the identification was 
completed for each class separately. For the neural network models, the technique 
was slightly different–as CNN results are lower than PTMs’, we only explained the 
process for PTMs. The Transformer models use an attention mechanism to deter-
mine which tokens in the comments should be given relatively higher importance 
(Devlin et al. 2019).

To extract the critical comments in each category, we used the attention values 
of the words–namely, the values generated by the models. This value was used to 
find the top words the model attended for each SATD type (i.e., extracting the words 
with the highest attention score). For each comment, we summed up the attention 
value of its tokens to calculate the total attention value of the sentence. However, 
longer sentences could have higher values with this approach since they had more 
tokens to sum (including meaningless words). Therefore, we normalized this score 
by dividing it by the total number of tokens present within the sentence (effectively 
turning it into a proportion per word). We used the mean attention of sentences and 
sorted them based on their average. The ranked comments show those with the high-
est attention by the model for each SATD type in order, similar to extracting fea-
tures with the highest weights in ML techniques. The details of the process used for 
extracting attention values for each token are discussed in Sect. 3.3.

As the number of comments is significant, we identified a representative sample 
from the ranked comments for manual analysis. Since the ranked comments were 
duplicated for some types (e.g., nocov comments in Test Debt), we used distinct 

(5)F1avgmacro =1∕k

k
∑

n=1

F1_macro(i)
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comments only for the manual analysis and obtained the sample size after removing 
duplicates. We searched for a representative sample of size n per type and calculated 
it with a confidence level of 95% and confidence interval of 5 for each SATD type 
(namely, we obtained 12 samples, one per type). 5 Although the sample was not 
randomly selected, by using this process, we ensured that it represented the whole 
set. As we have the ranked list of comments (computed from the highest attention 
scores from the DL models), we used the n comments that have the highest scores 
in each SATD type for the manual analysis. Overall, the 12 samples accounted for 
1345 Comments in total for the manual analysis; the statistics of D2 and the per-type 
sample size are available in Table 3. Even if the reduction in some types was minor 
or non-existent (e.g., Usability Debt or Versioning Debt), we worked with the sam-
ple to have a standardized approach across all SATD types.

Finally, random sampling was not required because the comments are ranked, and 
the threat of missing some essential ones by only using the high-ranking comments 
was negligible.

3.5.2 � Identifying causes

Two of the authors read the comments for each SATD type to identify the plau-
sible causes behind each SATD comment, using the categories identified by Men-
sah et al. (2018). These are: The causes they identified were: Code Smells (violated 
methods and classes resulting in serious problems in a project, according to Fowler’s 
Code Smell definition6, Time Constraints (actions are limited by deadlines), Too 
Complicated and Complex (developers resorting to simple solutions because of the 

Table 3   Dataset D
2
 after 

removing duplicates and 
sampling (see Table 2) for 
statistics)

Abbr. TD Type # w/o Duplicates Sample Size

CD Code 1232 293
UT Test 281 163
DF Defect 474 212
REQ Requirements 220 140
AR Architecture 195 130
AL Algorithm 180 123
DS Design 142 104
BU Build 97 78
US Usability 45 40
DOC Documentation 39 35
PP People 16 15
VC Versioning 12 12

Total 2933 1345

6  Available on his site: http://​marti​nfowl​er.​com/​bliki/​CodeS​mell.​html).
5  The sample size was calculated using https://​www.​surve​ysyst​em.​com/​sscalc.​htm.

http://martinfowler.com/bliki/CodeSmell.html
https://www.surveysystem.com/sscalc.htm
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complexity, effort or knowledge needed otherwise), Inconsistent Performance (the 
software’s performance varies for the same function), Inconsistent Communication 
(clear misunderstandings, hearsays, confusing communication), Heedless Failure to 
Remember (developers cannot remember what they were supposed to do, or they are 
writing them down not to forget), Inadequate Testing (a variety of issues related to 
unit testing).

However, Mensah et  al. (2018) studied only Code Debt, without considering 
other SATD types. Therefore, we extended their corpus to include new causes not 
uncovered before.

To classify the 1,345 comments, we used a hybrid card-sorting technique (Whit-
worth et  al. 2006), which is a combination of open and closed card sorting. We 
started the classification using the SATD types from Mensah et al. (2018) (closed 
card-sorting), but detected ‘emergent’ cause as we went along. Therefore, we con-
ducted an open card-sorting; when we detected an emergent cause, we gathered 
several comments possibly fitting that cause, discussed them, and decided whether 
a new cause was warranted or the comments fit existing causes. In cases of new 
causes, we decided on a name and acronym and the conditions to label it. Then, we 
repeated the individual labelling using these new categories and peer-reviewed the 
final results to determine the agreements.

Finally, we obtained 16 plausible SATD causes summarised in Table 4. Note that 
the categories explained in this Table also include results from this paper (present in 
the fourth ‘block’ of the Table). We chose to present this partial information here for 
ease of reading, but further discussions will be presented in Sect. 4.3.

Two authors separately classified the comments according to the resulting 16 
SATD plausible causes. Note that some comments pertained clearly to more than 
one cause and were thus categorized using multiple causes. Both authors discussed 
disagreements through peer-review sessions to finalize the causes of each SATD 
instance. The inter-raters’ reliability was calculated using Cohen’s Kappa coefficient 
(McHugh 2012); this is a test that measures the level of agreement among raters and 
is a number between − 1 (highest disagreement) and + 1 (highest agreement). On 
average, the manual classification of this step led to an agreement of 83.04%, which 
is considered high. The resulting manual SATD classification dataset is publicly 
available for replication purposes.7

4 � Results

This section presents our results to the RQs.

7  https://​bit.​ly/​3sGqk​Re

https://bit.ly/3sGqkRe
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4.1 � RQ1: Techniques to extract SATD

The results of the classifiers applied to dataset D1 are presented in Table  5. We 
report the average of five classifiers in the 5-fold stratified cross-validation for Preci-
sion (P), Recall (R), and F1 scores for each model. The training time for the models 
is presented in the last column of Table  5. Although there is a significant differ-
ence among the models’ training time, the inference times are close to each other, 
1/268 of a second for CNN and in the range of 1/96 to 1/90 of a second for all other 
models.

Among the three categories of the models we studied, PTMs perform the best.
Overall, in the ML group, Max Entropy had the best results for all scores, com-

pared to SVM and LR. However, the results of SVM were slightly better than LR. 
ME outperforms SVM by 14.28, 3.95, and 9.18 scores in Pavg , Ravg , and F1avg . PTM 
improved the ME results by about 9.73 F1 score (namely, they performed signifi-
cantly better). CNN performs better than Max Entropy, but its average precision, 
recall and F1 scores were 3.68, 9.98, and 6.31 lower than the best performing PTM 
(thus, it outperformed Max Entropy, but not PTMs). ALBERT performed slightly 
better than RoBERTa in two scores, and improved ME results by Pavg = 11% , 
Ravg = 14.8% , and F1avg = 12.8% scores, respectively.

These numbers were  compared to the work of Zampetti et  al. (2020), 
who  reported reaching up to 73% precision and 63% recall for removing SATD 
using their patterns combining Recurrent Neural Networks and CNNs, and the 

Table 5   Classification results on 
dataset D

1
 (RQ1)

The best results are given in bold

Approach SATD (%)

Pavg Ravg F1avg Training time

ME 78.88 74.02 76.36 1 min 52s
SVM 64.62 70.05 67.22 1 min 20s
LR 61.04 72.74 66.37 0 min 16s
CNN 83.92 76.29 79.89 3 min 18s
ALBERT 87.62 85.03 86.21 52 min 6s
RoBERTa 85.91 86.27 86.09 48 min 58s

Fig. 2   AUC plot of models for 
SATD detection (binary clas-
sification)
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work of Ren et al. (2019) which achieves average F1-score in the range of high 
70s in their experiments using CNN for the detection of SATD and non-SATD. 
Though the datasets are different in these works, the CNN performs around 80% 
F1 score in our case, which is still lower than the performances of ALBERT and 
RoBERTa.

If we consider the non-SATD category as the main class to be predicted, 
the F1 score for all models were above 90. For the others, the F1 scores were 
ME = 95.14 , SVM = 91.59 , LR = 92.34 , and CNN = 95.90 , while for the PTMs, 
the F1 scores were ALBERT = 97.09 and RoBERTa = 96.83 , respectively. In par-
ticular, ME, CNN, and the pre-trained models are in the high 90s.

As RQ1 discusses the binary classification, we also provide the Area under 
the ROC Curve (AUC) plots of the models as presented in Fig.  2. AUC value 
is a number between 0 and 1, inclusive, and a higher number shows the model 
has a good measure in separating the SATD class. The values of the AUC plots 
are, in ascending order, SVM = 0.89 , LR = 0.90 , ME = 0.93 , CNN = 0.94 , 
ALBERT = 0.97 , and RoBERTa = 0.97 . These results confirm that both PTMs 
perform better than other models and that the results of CNN and ME are close 
but slightly behind the PTMs’ AUC values. As a result, CNN and ME could be a 
less expensive implementation model (in terms of computational resources).

PTM models better predict SATD comments, having higher Recall, Precision 
and AUC values. Note that this question was a binary classification into SATD 
and non-SATD to prepare the datasets for RQ1. As a result, this first step did not 
distinguish between SATD types.

RQ1 Findings. Max Entropy (ME) classifies SATD comments in R packages with 
an F1 > 76% , and CNN improves the ME results slightly. Besides, PTMs increase 
ME’s results up to 10% F1 score and achieve the best performance.

4.2 � RQ2: Techniques to detect SATD types

The results of our experiments on identifying different types of SATD is presented 
in Table 6. The highest score among all models is shown in bold. The highest scores 
among the models within the ML category are underlined. ALBERT displays results 
for 10 and 30 epochs. We only report the average F1 scores for all the models.

This analysis produced similar results to RQ1. Among the ML models, ME per-
formed better than SVM and LR models, while PTM outperformed the other mod-
els. Following the literature (Liu et  al. 2019; Kanade et  al. 2020), we fine-tuned 
ALBERT and RoBERTa models for ten epochs, since training RoBERTa for more 
epochs leads to overfitting.

Based on the results obtained for ALBERT for People type (which is 0), we 
decided to retrain ALBERT for 30 epochs (present as ALBERT-30 in Table 6). This 
improved the results for all types, especially for those with a small number of com-
ments in the test set; e.g., for People, the F1 score progressed from 0 to 52.82, which 
is remarkable given the low number of cases present in the dataset. The exception 
for this improvement was two categories (namely, Requirements and Algorithm 



1 3

Automated Software Engineering           (2022) 29:53 	 Page 23 of 41     53 

Debt) that had a slight decrease in F1 score; we believe this was because of how 
varied comments of these two types were, but a more detailed analysis was out of 
the scope of this study.

Although the micro-average did not improve much between ALBERT-10 and 
ALBERT-30, the macro-average increased by 7 scores in the latter. Among all the 
models, RoBERTa has the best performance for all types, which is different from the 
results of RQ1. For detecting SATD versus non-SATD comments, ALBERT-10 had 
slightly better Precision and F1 scores. We did not perform another assessment with 
more than 30 epochs due to the risk of overfitting.

However, to distinguish between the different SATD types, RoBERTa is a bet-
ter model as it achieved a better performance in most SATD types (except Test and 
Defect Debt), with only ten epochs. For a binary SATD/non-SATD classification, 
ALBERT-30 provided the best outcome.

Similar to RQ1, SVM and LR had the lowest scores. Max Entropy performed 
better than CNN since it had higher micro- and macro-average F1 scores than CNN; 
this can be related to the large amount of data that DL models require for training. 
Interestingly, CNN results for Documentation and People Debt are 0; this may be 
due to a combination of sample size and language variability (meaning, how many 
diverse words are used in the comments), but a detailed analysis remained out of 
scope. Nevertheless, Max Entropy detected comments of these two types with 49.8 
and 34.7 F1 scores. RoBERTa improved the results of Max Entropy by 5.34 micro-
average and 6.24 macro-average, which was an 8% and 12.3% improvement of the 
results, respectively.

Table 6   Classification results on dataset D
2
 (RQ2)

SATD Type F1avg (%)

ME SVM LR CNN ALBERT-10 ALBERT-30 RoBERTa

Testing 83.24 82.42 84.07 84.68 87.42 87.81 86.88
Code 65.96 54.91 53.15 63.42 67.53 67.99 68.56
Versioning 44.76 46.43 51.75 48.00 38.23 41.42 61.43
Architecture 47.50 39.51 41.77 50.04 53.61 57.80 58.14
Defect 49.28 46.70 49.30 49.76 56.34 58.27 57.66
Build 48.22 46.39 41.94 46.47 38.69 43.35 52.06
Documentation 49.76 32.32 39.15 0 21.05 45.97 51.26
Requirements 37.86 38.17 39.82 35.92 42.40 40.27 46.62
Design 44.46 34.47 37.74 33.27 30.87 31.69 45.37
Usability 38.56 35.30 32.56 23.77 36.58 37.63 43.06
People 34.68 7.34 10.6 0 0 52.82 42.29
Algorithm 28.48 23.58 25.27 23.09 24.78 24.02 31.30
Non-SATD 79.18 75.64 76.27 82.18 88.26 88.12 87.76
Micro-avg 65.64 59.19 58.93 64.21 68.58 69.40 70.94
Macro-avg 50.15 43.32 44.77 41.58 45.04 52.09 56.34
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It is worth mentioning that ME was previously used for identifying Design 
and Requirements Debt, where the authors report an average F1-score of 62% 
and 40.3% for each category in a Java dataset, respectively (da Silva Maldonado 
et al. 2017). Although the datasets are different between their and our study, ME 
achieves average F1 scores of 44.46% for Design Debt and 37.86% for Require-
ments Debt in our dataset, which are lower than the previously reported num-
bers. Even the best performing models in our study have F1 scores of 45.37% and 
46.62% for Design Debt and Requirements Debt in R, respectively. The number is 
still below the reported number for Design Debt reported in da Silva Maldonado 
et al. (2017), which can be an indication of the differences in SATD occurrences 
in OO programming and R.

Prediction difficulty. Interestingly, there is a difference in the ability of the mod-
els to predict the type of SATD comments. Based on the results, some types have 
higher, and others have lower F1-scores. For example, considering RoBERTa’s 
results, the performance is higher for non-SATD, followed by Test Debt with a sig-
nificant margin compared to all other types; however, this type was fairly ‘stand-
ardized’, meaning that the comments revolved around limited and repetitive issues. 
After that, the performance in descending order belongs to Code, Versioning, Archi-
tecture, Defect, Build, Documentation, Requirements, Design, Usability, People, and 
Algorithm Debts. Note that the last five SATD types have F1 scores below 50%. 
Among these, the lower the scores, the more distinct keywords were used in those 
comments.

Although a detailed investigation regarding the nuances of the natural language 
was out of scope for this paper, we did notice several characteristics that may be 
influenced the F1 scores. There are three cases worth discussing:

•	 Low sampling numbers: Two types, namely Usability and People Debt have 71 
and 21 samples respectively, as seen on Table 2. As a result, the low F1-score of 
these cases can be assumed to be caused by the low training sample. Note that 
these TD types are not as common as others and have not been studied in other 
SATD investigations of automated detection (Vidoni 2021b).

•	 Adequate sample, variable vocabulary: This is the case of Requirements, Design 
and Algorithm Debts, in which the original samples are 355, 221 and 276 respec-
tively, but the F1-scores all remain below 50. However, given the nature of these 
TD types, the vocabulary present in the sample comments is nuanced and highly 
variable–this means that, although it is easy for a human to detect them, the algo-
rithms are not. For example: Need to create a separate image for 
every different vertex color is Requirements Debt. However, cur-
rently only for a single layer and nothing for seasonal-
ity yet are also Requirements Debt. They do not always have keywords (e.g., 
there is no ‘to-do’), and the language can be ambiguous (e.g., the word ‘layer’ 
was referring to layers of a plot in ggplot2 style, and not to architectural lay-
ers). Note that investigating the semantics of the natural language used for each 
TD type in scientific software was out of scope for this study; this would also 
need dividing scientific software into domains (e.g., bioinformatics, geology, 
general statistics) to further narrow down the language.
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•	 Low samples, relatively stable vocabulary: In this case, Versioning and 
Documentation also have very low samples (21 and 53, respectively), but 
the F1-scores are higher. However, they both represent different situations. 
Regarding Versioning Debt, the samples have a stable jargon, and it is also 
highly possible that the models were overfitted; we did not detect this when 
revising the selection, and it is not easily done either as samples are scarce, it 
does not seem to be reported in source comments (as per the survey by Vid-
oni (2021b); Pinto et al. (2018)), and it has not been automatically detected 
in source code comments before. Regarding Documentation Debt the vocabu-
lary is somewhat more stable, but given that F1 is about 51%, we could con-
sider the lower performance as a straightforward case of low samples.

When comparing these numbers to the statistics of Table 2, there is no relation 
between the number of available comments in the dataset and the performance 
of the models in predicting their types. For instance, the F1 score for Versioning 
is 61.43%. However, comments labelled as Requirements contain 7.15% of the 
comments in D2 , but the F1 score for this type is 46.62%. Likewise, Test Debt 
has higher scores than Code Debt in all the models, although the number of 
comments for Code are 2.5 times the number of comments labelled as Test Debt. 
As a result, we can conclude that the models’ performance was not linked to the 
number of available comments for a particular SATD type.

Table 7   Classification results 
of max entropy on D

2
 , with and 

without lemmatization (Lemm). 
best result is underlined

SATD Type F1avg Score (%)

ME (with Lemm.) ME (with-
out Lemm.)

Code 65.96 66.96
Test 83.24 85.28
Defect 49.28 53.18
Requirements 37.86 39.82
Architecture 47.50 47.60
Algorithm 28.48 29.78
Design 44.46 41.62
Build 48.22 46.96
Usability 38.56 43.34
Documentation 49.76 52.50
People 34.68 29.34
Versioning 44.76 44.76
Non-SATD 79.18 83.96
Micro-average 65.64 67.95
Macro-average 50.15 51.16
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4.2.1 � Effect of lemmatization

ML approaches require feature engineering and reduction. One of the main tech-
niques applied for reducing the number of features is lemmatization. As there 
are no previous studies on the effect of lemmatization on SATD detection, we 
conducted another study. We chose the best performing ML model (i.e., Max 
Entropy) and trained it on the dataset without lemmatization. The goal was to 
assess if  the results changed compared to those reported in Table 6 and if they 
could close the gap with PTMs’ performance.

For dataset D1 , when ME is used without lemmatization, the scores are 
Pavg = 81.9 , Ravg = 78.2 , and F1avg = 80.0 . Moreover, the results on dataset 
D2 without lemmatization improved by increasing the F1 score, as reported in 
Table 7. The exception to this are Design, Build and People Debt. A possible rea-
son for this could be due to the variety of words used by developers, as some of 
them belong to different SATD types.

Comparing these results to PTM models, ME’s outcomes were still surpassed 
by 4.4% and 10% on micro- and macro-average scores by the RoBERTa model, 
even with lemmatization. Moreover, RoBERTa has the advantage of higher scores 
for SATD types with few labelled comments, such as People and Versioning. 
However, PTM models take longer to train and require more computational power 
than ML models; thus, a lemmatized ME model could be preferred if time and 
computational power are an issue.

Table 8   Frequency (as a proportion of occurrences) for the causes to introduce SATD in R packages. 
some comments have more than one reason

Cause Frequency by Type of Debt

AL AR BU CD DF DS DOC PP REQ UT US VC

HFR 47.97 40.00 24.36 44.37 20.75 44.23 60.00 46.67 71.43 34.36 50.00 41.67
TCC​ 5.69 3.08 1.28 7.17 1.89 16.35 0.00 6.67 0.00 0.61 5.00 0.00
WOH 2.44 7.69 48.72 15.70 4.25 11.54 2.86 0.00 1.43 21.47 0.00 0.00
DC 0.00 0.77 0.00 8.53 0.47 0.00 0.00 0.00 0.00 1.87 0.00 0.00
MIC 15.45 1.54 1.28 5.46 7.08 4.81 2.86 0.00 32.14 3.07 27.50 16.67
MOF 4.88 0.00 0.00 0.68 1.89 2.88 0.00 0.00 5.00 1.23 5.00 8.33
INT 0.00 0.77 0.00 2.05 0.00 0.00 2.86 0.00 0.00 22.70 0.00 0.00
TNW 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 7.98 0.00 0.00
BUG 1.63 4.62 5.13 2.73 45.28 3.85 0.00 6.67 3.57 4.29 5.00 0.00
WTD 10.57 16.92 12.82 4.44 9.43 8.65 5.71 0.00 0.71 5.52 2.50 0.00
DQ 26.83 3.85 2.56 10.92 10.38 8.65 8.57 20.00 13.57 4.91 12.50 8.33
IAS 4.07 1.54 3.85 1.37 4.25 19.23 20.00 0.00 3.57 4.29 7.50 33.33
IC 1.63 0.77 0.00 0.34 0.00 0.96 5.71 46.67 0.00 0.61 0.00 0.00
LOK 3.25 4.62 2.56 7.85 4.72 2.88 0.00 0.00 2.86 4.91 2.50 0.00
UCP 1.63 44.62 2.56 0.34 1.42 0.00 0.00 13.33 0.00 0.61 0.00 0.00
TC 5.69 3.08 1.28 7.17 1.89 16.35 0.00 6.67 0.00 0.61 5.00 0.00



1 3

Automated Software Engineering           (2022) 29:53 	 Page 27 of 41     53 

RQ2 findings Similar to RQ1, the best models to classify different SATD types 
in R packages remained PTMs and ME. The best performing model was RoBERTa, 
which worked better in types with few comments for training. We relate this to the 
knowledge learned by PTMs during their pretraining on the large general-purpose 
text.

The major findings for this question were: 

1.	 Prior works had only successfully detected 5 SATD types, and we detected 12 
SATD types without overfitting the models.

2.	 We used PTMs for the first time for SATD per-type detection and demonstrated 
that they outperformed other techniques even in cases with few available samples.

3.	 Regarding ML models, our study to determine the effect of lemmatization in Max 
Entropy is the first of its kind. It demonstrated positive results in most SATD 
types, provided they have a large sample. However, though the F1 values improve, 
they do not match the PTMs performance.

4.3 � RQ3: Causes of SATD types in R

The comment classification phase categorized the 12 SATD types according to 16 
plausible causes as shown in Table 8. Comparing the types to the causes of introduc-
tion is necessary to explore the nuances between TD types–i.e., before the classifica-
tion, it was possible to hypothesize that some TD types may have different causes 
(e.g., reasons) for happening/being introduced.

The process to obtain these causes of TD introduction was discussed in Sect.3.5, 
and the full names for each acronym were presented in Table 4. Note that some com-
ments have multiple causes, thus, the proportions exceed 100 when summed up. For 
readability, Table 8 highlights extreme cases; the most common cause is highlighted 
in bold red, the second-most in italics orange, a special case (discussed below) in 
underlined green.

As mentioned in Sect.  3.5, seven of these categories were defined and uncov-
ered by Mensah et  al. (2018). However, the category ‘Inadequate Code Testing’ 
was divided into ‘Insufficient Testing’ (INT) and ‘Tests Not Working’ (TNW), to 
differentiate between different types of test smells, given that prior studies dem-
onstrated that R packages are prone to Test Debt (Vidoni 2021a). Thus, we count 
INT and TNW as the ‘original’ eight categories. This distinction was possible since 
we had a large sample of Test Debt and a prior study that identified different types 
of test smells (Vidoni 2021a). Likewise, the original category of ‘Code Smells’ 
was renamed ‘Workarounds or Hacks’ (WOH) due to the original name being too 
generic. These changes were summarised in Table 4.

We worked with these causes as a starting point. However, given that OO 
(or traditional, commercial) software has some differences with scientific soft-
ware, through the process described in Sect. 3.5, we identified eight new causes 
of SATD (also presented in Table  4). However, while we detected these in the 
source code comments of R packages, they are generic enough to be extended to 
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other languages. Further research is required to validate these causes in the con-
text of other languages. Overall, the new types are:

•	 ‘Dead or Unused Code’ (DC), which supports the findings of Vidoni (2021b), 
who identified a concerning trend of R developers to leave unused code com-
mented-out rather than removing it. Moreover, this is also a known smell for 
Code Debt (Kaur and Dhiman 2019), but it had not been identified as a cause 
for SATD before.

•	 Vidoni (2021b) surveyed developers about the comments they wrote in their R 
packages and determined that many of them add notes about bugs or issues as 
reminders to work on them but seldom address those comments. Those prior 
findings align with the new causes ‘Known Bugs’ (BUG), ‘Warning to Devel-
opers’ (WTD), and ‘Developers’ Questions’ (DQ).

•	 ‘Missing or Incomplete Features’ (MIC), ‘Misunderstanding Features’ (MOF) 
and ‘Instructions and Steps’ (IAS) also support prior works that surveyed R 
developers and determined they use source code comments to document pos-
sible features, rather than perform thorough elicitation (Pinto et al. 2018).

•	 ‘Lack of Knowledge’ (LOK) is also considered a cause, as it aligns with prior 
studies that determined some inadvertent developers can incur in TD uninten-
tionally (Fowler 2009; Codabux et  al. 2017). This is also related to ‘Devel-
opers’ Questions’ (DQ), especially in collaborative software development 
(namely, a comment is added hoping that another developer works on it).

Regarding frequencies, ‘Failure to Remember’ (HFR) is either the most common 
or second-most common cause for all SATD types, with only three types having 
it as the second-most common cause (i.e., Architecture, Build and Defect). This 
aligns with the survey results that accompanied the original paper that provided 
the dataset (Vidoni 2021b) since the participants disclosed that they mostly add 
SATD as self-reminders. Moreover, since we allowed a comment to be classified 
into more than one cause, several had HFR as a secondary reason. HFR is one of 
the most ‘flexible’ causes of SATD, meaning it applies to multiple cases and can 
be combined with other causes. The following are some post-processed examples 
of comments:

•	 Architecture: mean for any k dim array fixme ? reduce is 
very slow here related to a performance issue (UCP) but was a still-
unresolved fix request (hence, HFR since it could have been forgotten and 
not fixed). It was not a BUG because the function was working, but with 
lower performance. Also, make sure no segment of length 1 
remains to-do this should not occur and needs to be 
prevented upstream was classified as HFR since it was a clear reminder 
of a task left for the future.

•	 Documentation: profile fixme how to handle the noise if as 
below document it, is an HFR because it is a reminder to update the 
documentation as per the comments explaining the code below.
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•	 Test: to-do add logging more in-out tests add test case in 
package indicated the need to add more tests (INT), but was also something not 
yet done, and flagged as a reminder for the future, hence HFT.

Note that we could not check whether some of the HFR had been successfully fixed 
in a future commit, and it was not feasible to elicit whether a developer forgot about 
a comment or not. Nevertheless, it was deemed that, while a comment (possibly cat-
egorized as HFR) was left in the code, it meant the developers had not yet fixed, thus 
being ‘temporarily forgotten’. Therefore, though there is a chance the occurrence was 
slightly higher, prior works also identified HFR as the most common cause (Mensah 
et al. 2018), thus supporting our findings.

After that, ‘Instructions and Steps’ (IAS) was the second-most common cause for 
three debts (namely, Design, Documentation and Versioning Debt), which as explained 
above, matched behavioural findings of other studies (Pinto et al. 2018; Vidoni 2021b). 
Relevant examples are cell has to be a list column for the tib-
ble add row in insert shims to work with increased type 
(Design Debt, IAS only as it explained how to use a particular parameter), and roxy-
gen2 can t overwrite namespace unless it created it so 
trick it into thinking it did and add the rstan (Documenta-
tion Debt, IAS only as it was explaining to other developers why a piece of code was 
added). These comments often explained why the debt was introduced or how to work 
with it instead of fixing it.

Finally, TNW is a particular case to be discussed since it was only found, as 
expected, in comments containing Test Debt. It was used to indicate when a test was 
not working and remained unfixed. For example, to-do rework these tests 
because currently failing (HFR, TNW), and fails when plpre-
sult is not class plpresult (TNW). Finding this cause for SATD intro-
duction only on Test Debt was expected since it is inherent to this particular debt type.

RQ3 Findings We uncovered eight new causes of SATD that support prior find-
ings on related areas and increased the number of plausible causes for SATD intro-
duction from eight categories to 16. Though this study worked with R packages, the 
causes are generalizable enough to be studied in other programming languages.

Regarding frequencies, we confirmed that ‘Failure to Remember’ (HFR) is the 
most common cause for most types of SATD, as it is flexible and often accompa-
nies other causes (namely, the comments having multiple causes). Some causes are 
almost exclusive to specific types, with few occurrences outside a particular type. 
These cases are TNW and INT for Test, IC for People, and UCP for Architecture; 
this was reasonable, as these causes are linked to issues specific to those particular 
TD types.

5 � Discussion & Implications

Our study achieved the best results for SATD detection using the PTMs models, 
with ALBERT having slightly better performance F1 = 86.21% ) overall compared 
to RoBERTa, followed by CNN (in the deep neural network category), and finally 
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Max Entropy (in the ML category). This is comparable to the latest work (at the 
time of writing) in SATD detection for OO languages (Ren et al. 2019). PTMs have 
never been used in SATD detection for OO languages and they have been shown to 
perform better than traditional deep neural algorithms and machine learning algo-
rithms for software engineering tasks such as classification (Minaee et al. 2020).

Similarly, our study uncovered seven additional SATD types compared to the lat-
est (at the time of writing) SATD work (Liu et  al. 2018). However, some of the 
SATD types in R have lower F1 scores when compared to OO projects. However, 
this is the first study uncovering these additional types. Thus, as future work, we 
will try different search strategies to gather better training samples for those specific 
types to investigate whether they yield better accuracy.

Lastly, compared to the latest work regarding SATD causes (Mensah et al., 2018), 
we identified eight additional SATD causes in R. (Mensah et al. 2018) had focused 
only on code debt and therefore identified only seven causes of SATD (one of which 
we split into two, yielding eight base causes). Despite our new causes not being 
investigated in OO projects, they are generic enough that they could be applicable 
to OO. For instance, code written in OO languages (e.g., Java) has comments that 
could be classified as ‘dead or unused code’ or ‘warning to developers.’ These new 
causes do not seem to be restricted to R programming. However, additional empiri-
cal studies are needed to investigate and confirm these hypotheses.

5.1 � Difficulty of detecting SATD types

Previous studies demonstrated that R-package developers do not formally elicit 
requirements but instead ‘decide by themselves’ on what to work on next and add 
comments to plan ahead (German et al. 2013; Pinto et al. 2018). R developers per-
form ad-hoc elicitation of requirements, taking notes as source code comments, and 
using that to organize their work, rather than following any development lifecycle 
(Vidoni 2021b; Pinto et al. 2018). Though this happens in traditional OO develop-
ment, it is not a widespread practice and influences what scientific developers write 
as comments (Vidoni 2021b). This is supported by these findings below:

•	 Requirements Debt was more challenging to identify, as the structure, word-
ing and quality of the comments in this type fluctuated considerably. Moreover, 
because R packages can be used in multiple domains (e.g., bioinformatics, geog-
raphy, finances, survey processing), the features/requirements documented in 
those comments also varied considerably, affecting the classification difficulty.

•	 This behaviour also increased the presence of specific causes for SATD introduc-
tion, such as ‘Failure to Remember’, ‘Instructions and Steps’, ‘Missing or Incom-
plete Features’ and ‘Misunderstanding Features’.

Likewise, Algorithm Debt was challenging to detect. This debt “corresponds to sub-
optimal implementations of algorithm logic in deep learning frameworks. Algo-
rithm debt can pull down the performance of a system” (Liu et  al. 2020). It is a 
recently-identified TD type that does not appear in OO software, being exclusive to 
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scientific and statistical software (Liu et al. 2020; Vidoni 2021b). Therefore, prior 
works based on OO programming languages have not included any keywords for 
this type of debt nor attempted to identify it automatically. Our analysis detected that 
the wording used on these comments varies considerably given the nature and type 
of algorithms implemented in a specific package. As before, the particular domain 
(e.g., bioinformatics, geography) affects how comments of this debt are worded. 
The following two examples showcase the versatility of comments belonging to this 
type: soil depths for naming columns it seems that depth is 
not explicitly exposed but thickness is (referring to a particular 
algorithm regarding soil depth and thickness), and inference type depends 
on method normal both bootstrap only confidence for now 
(regarding statistical bootstrapping). As a result, a more specific study of Algorithm 
Debt is required to identify the nuances in comments.

5.2 � Causes that Introduce SATD

‘Failure to Remember’ (HFR) comments were left as future to-dos; this is aligned 
with previous findings regarding using SATD comments to organize requirements 
(Pinto et al. 2018; Vidoni 2021b). The reasoning behind the cause is different to that 
of OO programming. This is also related to ‘Missing/Incomplete Features’ (MIC) 
and ‘Developer Questions’ (DQ) for most types of debt, even if its presence is min-
imal. Even when previous studies demonstrated that about 11% of the comments 
are commented-out and left clogging files (Vidoni 2021b), a few SATD comments 
warned about its presence (namely, the category ‘Dead or Unused Code’ (DC)). This 
may indicate that R developers are not fully aware of the negative consequences of 
this practice, but further studies are needed. As discussed in Sect. 4.3, we considered 
that while a comment existed in the code, it was HFR (as it was written with the 
purpose of not forgetting to take action). It is also worth noticing that these com-
ments can sometimes become ‘obsolete’, namely, being left written even when the 
issues it admitted were already tackled. Though other works have focused on remov-
ing obsolete HFR comments (Gao et al. 2021), they only did so with explicit ‘to do’ 
comments. This study demonstrated that HFR is one of the most versatile causes 
that can often combine with other causes, effectively altering the wordings used. As 
a result, future studies could work on expanding the obsolescence detection, as well 
as investigating for how long such comments endure.

Several causes were more predominant in specific types, having almost no pres-
ence among others. This is reasonable since these causes are intrinsically linked to 
a particular action, period, or process in the software development lifecycle. For 
example, ‘Tests Not Working’ (TNW) and ‘Insufficient Testing’ both appear almost 
exclusively in Test Debt, as they are related to specific test smells; our detection also 
supports prior findings in R packages’ testing (Vidoni 2021a). Another example is 
‘Unexpected Performance’ (UCP), mainly associated with Architecture Debt. The 
fact that some causes are specific to TD types is expected since these examples are 
very specific and have less generic reasons, e.g., workaround or to-do.
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Finally, many comments were classified into two categories, and only two records 
of the 1300+ comments were classified into three categories.

•	 The first one was look for a fetchtimestamp method appropri-
ate to this item s fetcher this code is a bit fragile, 
which belonged to Architecture Debt, and was considered as a BUG (fragile code 
was interpreted as not working as expected), WTD (warning developers about 
steps to take), and WOH (since it was a hack to make the code work).

•	 The other case was to-do need to find a way to denote cat-
egories ? error chr cannot assign a category to an app 
to-do in Defect Debt, categorized as BUG (because there was an explicit error 
in the code), LOK (because ‘need to find a way’ indicates the developer did not 
know how to do something yet) and DQ (because it was posed as a question for 
other developers finding this and willing to assist).

Since it was not possible to analyze the comments compared to the related code (as 
explained in Sect. 3), the comments were found equally suitable to multiple causes 
and were thus marked as such. Overall, 39 (2.9%) of the sampled comments were 
classified according to more than one cause. This demonstrates that although some 
TD occurrences are straightforward and derived from a single cause, a percentage of 
them has multiple causes. Albeit the number of cases was small, this is a flag for TD 
management, because to ‘repay’ a particular debt, all of its causes need to be man-
aged (Freire et al. 2020).

Regardless of these difficulties, our findings can also contribute to enabling future 
works related to ‘on-hold SATD’ (Maipradit et al. 2020b, a), since prior automated 
works only focused on large corporate Java projects and did not typify TD instances 
but instead worked with a simple binary (TD/nonTD) classification.

5.3 � Implications

Our research provides detailed insights about SATD in R packages, but a key impli-
cation is demonstrating that using existing SATD results based on OO analysis 
(mostly limited to statically-typed, large-scale Java or C++ projects) results in an 
incomplete picture of SATD in R. For example, prior work by Vidoni (2021b) had 
already demonstrated that SATD in R has a different frequency of types, but also 
added 11 new textual patterns for its identification–this means that, without those 
patterns, further automation would have created a considerable amount of false neg-
atives. Our work demonstrates that automating detection based on different patterns 
is feasible while also obtaining high precision values.

In this study, we compared three groups of techniques to automate SATD detec-
tion, using PTMs for the first time and demonstrating that they can detect several 
TD types, even with low samples. Note that we detected 12 TD types, in contrast 
to previous works that worked with 2-5 types only. This implies that, without this 
study, other TD types would remain undetected and thus less studied; our work 
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also contributes to the broader SATD field by demonstrating automation of other 
TD types (beyond the traditional Code, Test, Defect, Design and Architecture) is 
achievable.

Moreover, because PTMs are underutilized in terms of SATD detection, our 
results can help researchers make informed decisions about the best performing 
models for future studies. Our findings also contribute to demonstrating the flex-
ibility of PTMs, and their high accuracy, even when working on nuanced domains. 
This is because the techniques we studied achieve approximately 86 F1-score on 
identifying SATD in a large imbalanced dataset, and the best technique obtains a 
micro-average F1-score of above 70% for classifying different types of SATD, which 
are values above the performance of traditional ML methods used so far.

We found that some types of SATD are harder to detect, and this can be a line of 
research to develop techniques for detecting these types.The main implication of this 
is that, although some TD types are quite straightforward and someone explicit on 
the admission of TD introduction/repayment, others are more nuanced and possibly 
explicit, presenting a more extensive vocabulary not as easily detected. Therefore, 
our results can be used to produce tools that not only detect more types of TD (we 
automatically detected 12, when prior work focused only on 2-5) but also can be 
translated to a tool to assist computation scientists to improve the robustness of their 
code. Therefore, our findings are usable and relevant beyond software engineering 
and software development, potentially assisting scientists in other disciplines. With 
our new types and causes combined with findings of OO SATD studies, the R com-
munity can focus on issues that are specific to R, either by developing guidelines for 
authors to review their code prior to submitting their packages or for organizations 
such as rOpenSci (Codabux et al. 2021), to train their reviewers which will review 
packages prior to publishing them.

R developers can use our research results to develop guidelines for others, 
explaining which types of comments to look for when reviewing the code for sub-
mission to the Comprehensive Archive Network (CRAN)8. CRAN is the primary 
archive to submit user-generated R packages or other package peer-review organiza-
tions such as BioConductor and rOpenSci. Such a process would minimize and bet-
ter manage the debt existing in their packages.

Lastly, our dataset is publicly available for replication purposes or complemen-
tary studies. This will help advance R research in software engineering as it is cur-
rently lacking.

6 � Threats to validity

The section elaborates on the threats to the validity of this study and how they were 
mitigated.

External validity External validity refers to the ability to generalize results. 
This study was conducted on scientific software, more specifically, R packages. 

8  https://​cran.r-​proje​ct.​org/.

https://cran.r-project.org/
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Therefore, we cannot extend our results to R scripts or literate programming (i.e., 
RMarkdown files). However, our results are likely applicable to other scientific 
packages but probably not to OO or procedural languages. The six models used to 
study RQ1 and RQ2 can be applied to any text classification task and are not spe-
cific to R. It will be useful to study their efficiency in detecting different types of 
SATD in OO programming languages (out of the scope of this study). However, 
the new causes described in Sect. 4.3 are generalizable enough to be extended to 
other languages, regardless of the programming paradigm, but further studies are 
required to confirm this.

Internal validity This threat refers to the possibility of having unwanted or 
unanticipated relationships. Our dataset comes from a previous study, and there 
might be bias in the labelling or wrong labelling. As we apply the classification 
task, bias might be introduced in the results specific to the test set. To alleviate 
this problem, we applied the stratified k-fold cross-validation, giving a chance for 
every sample to be used in the test set once while preserving the distribution of 
the classes in the train and test sets.

Both datasets, especially the second dataset D2 , which has fewer comments 
divided into 12 classes, was highly imbalanced. We tried different techniques to 
balance the datasets as mentioned in Sect. 3.3 and trained models with the bal-
anced data. Then, based on the best result obtained, we chose the balancing tech-
nique. This is done explicitly for the ML models to ensure that the best possible 
results are reported.

Another threat relates to the SVM and LR results, which have lower perfor-
mance for detecting SATD/non-SATD or SATD types. For these classifiers, differ-
ent features can be used to train the models: Term-Frequency Inverse Document 
Frequency (TF-IDF), Count Vectorizer, word embedding (from deep learning 
models), and n-grams. We trained the models with different features to provide a 
fair comparison to identify the best-performing one. The results we reported for 
these classifiers are the best models for our datasets (see Sect.  3.3), effectively 
mitigating this threat.

Pre-processing the dataset can introduce some threat to the validity of the results. 
We could not find a consensus in the literature about the pre-processing steps in 
the SATD detection studies. Since this is rarely reported, and there are varia-
tions about the pre-processing, we applied the techniques found in previous stud-
ies (da Silva Maldonado et al. 2017). Although lemmatization is used in many text 
classification works in software engineering (Stanik et al. 2019; Maalej and Nabil 
2015; da Silva Maldonado et al. 2017), we applied Max Entropy on the dataset with-
out lemmatization to examine its effects, reporting the results in Sect.  4.2.1. For 
the PTMs, there is no previous study in SATD detection that uses these models. 
Therefore, we applied the best practices of NLP to process the data (Liu et al. 2019; 
Kanade et al. 2020; Lan et al. 2020). Other pre-processing techniques such as stop 
word removal and lemmatization are reported rarely in the literature (Huang et al. 
2018; Mensah et  al. 2018). However, experimenting with different pre-processing 
techniques and assess their effect in the detection process is out of scope of this 
work. Some researchers also mention it as a future work to improve their models 
(AlOmar et al. 2022).
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The authors who trained the models are aware of ML theories and deep learning 
and tested them carefully to ensure they are not overfitted. Thus, we do not antici-
pate a threat related to training the models and reported results. Our findings with 
balancing the datasets contradict with the findings of Sridharan et al. (2021), so we 
experimented with building classifiers both for balanced and imbalanced data, fol-
lowing the approach of Wang et al. (2020) for handling imbalanced data in SATD 
detection.

Lastly, the manual process of identifying the causes of SATD can be biased. To 
mitigate this threat, two authors separately classified the SATD according to the 
causes and then discussed any discrepancy to finalize the classification. Moreover, 
both authors have over ten years of experience as developers, are well-versed in TD, 
and one of them has over five years of experience in R programming.

Construction validity Construction validity refers to the degree to which a test 
measures what it claims to be measuring. Some of the SATD types (e.g., People 
and Versioning) had a low number of occurrences and can be a potential bias for our 
findings. However, we alleviated this threat with the techniques mentioned in the 
internal validity section.

7 � Conclusion

We conducted a pioneering study to automatically identify Self-Admitted Technical 
Debt (SATD) in scientific software, namely, R packages, using comments extracted 
from 503 R packages, representing over 160k source code comments.

We studied the performance of three types of techniques: machine learning (ML), 
deep learning (DL), and neural pre-trained models (PTMs) for the automatic detec-
tion of SATD, with this being the first study to use PTMs for SATD per-type clas-
sification. We successfully automatically identified 12 types of SATD, which rep-
resents a considerable improvement given prior works worked with 2-5 types only. 
Moreover, automatic SATD detection in the context of R packages has not been 
addressed before in previous studies. We also manually classified comments sam-
ples and determined eight new possible causes (a total of 16) for SATD introduction; 
this represents an improvement from prior works that only identified eight causes.

Therefore, the results of our study can help investigate scientific software systems 
and mixed-paradigm languages. We found that some types of SATD are easier to 
detect, and some are harder for all models, which may be related to the varied nature 
of scientific software. Investigating the reasons can be a future line of research. 
Additionally, we determined that PTMs are the best classifiers for these tasks, man-
aging excellent results without overfitting even in cases where SATD types had a 
low number of comments (i.e., small samples).

In the future, to better understand SATD, we plan to investigate its causes more 
thoroughly, in particular, the rationale and context of the most prominent causes 
and the comments that pertain to more than one plausible cause. Besides, we 
will explore the management of SATD, including prioritization and removal to 
improve the quality of the software. Another line of work includes investigating 
why certain SATD types are more difficult to detect than others and developing 
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new techniques to improve their detection, including experimenting with differ-
ent pre-processing techniques. Lastly, we want to implement a tool to support our 
automation and test it with computational scientists writing scientific software as 
part of their research.
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