
On the Developers’ Attitude Towards CRAN Checks

Pranjay Kumar
Davin Ie

RMIT University

Melbourne, Australia

Melina Vidoni
melina.vidoni@anu.edu.au

Australian National University

Australia

ABSTRACT

R is a package-based, multi-paradigm programming language for

scientific software. It provides an easy way to install third-party

code, datasets, tests, documentation and examples through CRAN

(Comprehensive R Archive Network). Prior works indicated

developers tend to code workarounds to bypass CRAN’s automated

checks (performed when submitting a package) instead of fixing the

code–doing so reduces packages’ quality. It may become a threat

to those analyses written in R that rely on miss-checked code. This

preliminary study card-sorted source code comments and analysed

StackOverflow (SO) conversations discussing CRAN checks to

understand developers’ attitudes. We determined that about a

quarter of SO posts aim to bypass a check with a workaround;

the most affected are code-related problems, package dependencies,

installation and feasibility. We analyse these checks and outline

future steps to improve similar automated analyses.

CCS CONCEPTS

• General and reference→ Empirical studies; • Software and

its engineering → Software libraries and repositories; Software

defect analysis.

KEYWORDS

Software Ecosystems, Package-Based Environment, R

Programming, CRAN Checks

ACM Reference Format:

Pranjay Kumar, Davin Ie, and Melina Vidoni. 2022. On the Developers’

Attitude Towards CRANChecks. In 30th International Conference on Program

Comprehension (ICPC ’22), May 16–17, 2022, Virtual Event, USA. ACM, New

York, NY, USA, 5 pages. https://doi.org/10.1145/3524610.3528389

1 INTRODUCTION

R is a multi-paradigm, package-based language for scientific

software [15]. R developers contribute extension packages to the

‘base’ language [16] to CRAN (Comprehensive R Archive Network),

which allows installing and importing packages with a single

command. CRAN submissions are automatically checked [9, 18] on

a process meant to filter submissions1. These checks are essential

1Details on CRAN checks are available on: https://r-pkgs.org/r-cmd-check.html

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ICPC 2022, May 21–22, 2022, Pittsburgh, PA, USA

© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9298-3/22/05. . . $15.00
https://doi.org/10.1145/3524610.3528389

since organisations like rOpenSci or BioConductor adopted them

in their quality control [3].

Prior works addressing R packages’ source code comments

determined developers tended to bypass CRAN’s checks, creating

workarounds instead of fixing the code [16]. This practice is

problematic–it reduces package quality and introduces technical

debt, discrediting such automated revision. In particular, “part of the

complexity in measuring the scientific software ecosystem comes

from how those different pieces of software are brought together

and recombined into workflows" [8]. This complexity is critical

for R because, given its package-based structure, new packages

‘run off’ previous packages, whose maintainability and quality are

affected by the packages it relies on [1]. This is problematic since

R’s popularity grew over the last few years. The IEEE Spectrum

ranked R the 7th most popular language in 20212, being considered

among the fastest-growing programming languages. Lai et al. [11]

demonstrated R grew from being used in 11.4% of the ecology papers

to 58% (in 2019) and given BioConductor’s impact, R is extensively

used in bioinformatics research. [6].

This paper is a preliminary investigation of developers’

intentions when approaching CRAN checks. We analysed source

code comments and StackOverflow (SO) discussions to determine

intention to avoid, fix or inquire about particular CRAN checks

and which are affected. Given the relevance of CRAN for the R

ecosystem [15], understanding this phenomenon can yield light

about the “Build Debt" of R packages. “Build Debt” are issuesmaking

the build task harder and time-consuming, such as ill-defined

dependencies; for R, it also encompasses CRAN (and its checks)

code coverage, among other tools [3].

Preliminary results indicate coverage calculations are prone to

manipulation with nocov tags in comments. Source code comments
indicate the introduction of “Build Debt", “Code", and “Defect Debt"

(in order), with checks related to “R Code Quality" being the most

exposed. In StackOverflow, checks about “Description", “R Code",

and “Package Structure" are the most queried, with about a third of

enquiries resulting in an avoidance behaviour. Moreover, there was

a peak of enquiries of any type during 2020.

The study dataset is available for reproduction purposes [10].

2 RELATEDWORKS

Different studies assessed CRAN packages. One analysed over 5000

CRAN packages according to check-status, determining most errors

are resolved within a few days without developer intervention

[2]. Another evaluated GitHub’s influence in CRAN, concluding

that R packages hosted on GitHub suffer from inter-repository

dependency problems, with CRAN-package updates causing

backward-incompatible changes [7]. Another evaluated CRAN,

2https://spectrum.ieee.org/top-programming-languages-2021

570

30th IEEE/ACM International Conference on Program Comprehension



ICPC 2022, May 21–22, 2022, Pittsburgh, PA, USA Kumar, et al.

BioConductor and R-Forge, determining that most packages depend

on CRAN but had builds directly affected by the check-status.

Technical Debt (TD) describes the problem of balancing

short-term value with long-term quality. An analysis of rOpenSci’s

peer-review process for R packages demonstrated the reviewers

depend on CRAN checks and are concerned with “Build TD" [3].

A study on SATD (Self-Admitted Technical Debt) concluded that a

considerable amount of source code comments admitted bypassing

a check to prevent CRAN from detecting the situation instead

of fixing it [16]. Using SATD comments to analyse developers’

motivations has drawn attention from the research community

[12]. This includes studying developers’ reasons and purpose

for introducing “Build TD” [19], determining intention through

contextualised vocabulary [5], and finding priority of tasks to

understand developers’ logic [13].

3 METHODOLOGY

Our goal is to analyse how developers approach CRAN checks

problems, determine if they are fixed or bypassed/avoided (with a

workaround), which checks are most affected, and how this trend

evolved. Our research questions (RQ) are: RQ1) What CRAN checks

are more discussed in source code comments, and which debt do

they affect the most? RQ2) Are developers prone to bypass checks

instead of fixing them? Since there is no previous work on this

domain, understanding why the avoidance happens is a future

work dependent on answering the above RQs.

3.1 Comments Analysis

We analysed SATD source comments using the publicly available

dataset of a prior work, which contains 4,962 source code comments

(of 500 R packages) classified into TD types, also listing comment’s

length in line, file, and package name [16]. Our analysis of this

dataset was done in phases:

Phase 1.1. Two authors independently classified a representative

sample (95% of confidence, 5% of error) of 357 comments

(without code) asCRAN-related/not CRAN-related. After, the authors

discussed and analysed the differing classifications, reaching a

consensus. They had a Cohen-Kappa (CK) agreement of 0.85, which
supported a reliable classification [3].

Phase 1.2. The remaining 4605 comments were analysed

similarly. About 50 were deemed ‘explicitly CRAN-related’ since

they mentioned ‘CRAN check’ or ‘CMD check’. The remaining

were read and manually filtered. Both authors discussed their

classification (𝐶𝐾 = 0.846), reaching a consensus on the differences.
We obtained dataset𝐷1 = 393 of ‘possibly CRAN-related’ comments

(including the ‘explicit’), and 𝐷2 = 411 of nocov comments.
Phase 1.3. One author collected the corresponding functions or

lines of code for each of the 393 comments of Phase-1.2.

Phase 1.4. Two authors analysed 𝐷1 comments (with code) to
remove false positives. The final discussion CKwas 0.87.𝐷 ′

1 had 117

CRAN-related comments (including ‘explicit’); about 2.35% of the

original dataset. Many comments were ambiguously worded and

required code inspection but were ultimately false positives. For

example, hacky fix for visible binding warningwas a developer

warning, not CRAN-related.

Phase 1.5 Each 𝐷 ′

1 record was classified into the categories

used by CRAN to typify checks1; namely: metadata, structure,

description, namespace, R code, data, documentation, demos,

compiled code, tests and vignettes. Most comments had a single

category, but 13.6% had two because the code could not be installed

to reproduce it, or both were affected. This was decided through

continuous discussion, and no CK was calculated.

3.2 StackOverflow Analysis

Wemined SO discussions tagged as cran (totalling 717), irrespective
of the publication year, following mining guidelines [4], and

analysed them in phases:

Phase 2.1. Two authors analysed 85 posts (95% confidence, 5%

error), using previously-agreed clear examples (title and question

post) to define keywords representing CRAN-related posts. These

were: CRAN, R CMD, check, package, submission, and devtools

check (since devtools::check() runs CRAN checks locally).

Phase 2.2. We automatically labelled the posts by keywords

and obtained six groups (determined by keyword count). We

sampled 20% of each group, except for none or all keywords. Two

authors independently analysed the sub-samples to assess the

keywords’ accuracy and determined that: 1/6 were posts unrelated

to CRAN-checks (mostly only having ‘package’), while 2/6 and 3/6

had false positives (not check-related posts). Thus, we applied the

negative keyword ‘install’ to remove false positives. This produced

𝐷3 = 313, of SO posts with 2-6 keywords each.

Phase 2.3. Two authors independently read each 𝐷3 post,

labelling them into: avoid, fix, or not check-related, according to

the post’s wording; e.g., ‘how do I silence the warning’ or ‘ignore

this warning and do X’ were considered an avoidance. After, they

discussed their classification (𝐶𝐾 = 0.832), to reach consensus. Both
authors agreed on a third category, labelled process (i.e., enquiries

about the checking process, but not about a particular check).

Finally, 𝐷 ′

3 kept 200 posts.

Phase 2.4.. Every avoid/fix𝐷 ′

3 record was labelled by category of

CRAN checks [18], independently by two authors. They discussed

results (𝐶𝐾 = 0.84), reaching a consensus on the disagreements.
Posts labelled as process were not classified as CRAN-checks, except

some explicitly inquiring about a specific check.

4 RESULTS

4.1 RQ1: Admission in Comments

𝐷2 contained 411 comments tagging nocov, originally labelled as
“Testing TD" [16]. nocov is used by the package covr to exclude a
path or function from the coverage calculation3. This manipulation

excludes functions from the coverage, falsely increasing it, therefore

related to the CRAN-checks. nocov comments are about 8.3% of the

SATD comments. CRAN checks for testing are completed through

devtools::test() andbased on covr tests4, thus including

coverage calculations. Since poor testing and over-reliance in

coverage is a known issue [15], this was regarded as an admission

of bypassing test-related checks.

The comments dataset (𝐷 ′

1) was originally classified by TD type

[16]. Leveraging this data, Figure 1 displays the discussed checks

(y-axis) per TD type (colour).

3See: https://cran.r-project.org/web/packages/covr/readme/README.html
4https://rdrr.io/cran/devtools/man/test.html

571



On the Developers’ Attitude Towards CRAN Checks ICPC 2022, May 21–22, 2022, Pittsburgh, PA, USA

Figure 1: CRAN-check comments by TD type.

RQ Answer. About 43% comments admit “Build Debt", which

appears almost every TD type uncovered in SATD comments. It

is closely followed by “Code" and “Defect Debt" (each accounting

for 18%). “Test Debt" comments in 𝐷 ′

1 were either nocov with an
explanation or related to another test issue. Regarding admission,

“R Code" CRAN-checks are the most affected since it relates

to syntax errors, incorrect dependencies, object-oriented usage,

loading/unloading the package, visibility access, global variables,

among others. With considerable difference in the comment

numbers, the second affected check-type is “Package Structure".

Given the dataset was small, we did not classify into specific

evaluations per check-type.

Examples (given space limitations): Useless assignments to

pass R CMD check, and Dirty trick to avoid the warning of "no

visible binding for global variable".

4.2 RQ2: Community Trends

The mean answer count was 1.045, with 23.7% having no answers.

From the total, 59.6% posts did not have an approved answer

(thus, some answers were not approved as such). On average, each

question had about 2.5 comments. Most posts had four keywords
(41.4%), two (40%), and five (13.1%).
RQ Answer. Regarding attitudes, about 23.3% was avoidance,

with only 5.5% enquiring about specific checks (type process).

Although somewhat positive, the proportion of avoidance is

concerning. Figure 2 summarises the attitude of the post (fix, avoid

or process enquiry) regarding each coded check.

Figure 2: SO posts by CRAN check type and attitude.

Regarding avoidance, “Description" checks are prone to

workarounds (about 28.9%; i.e., stop the warning/note, without

fixing it). “R Code" checks accounted for almost 20.9%, and for

“Vignettes", about 25% aimed to avoid, which is concerning, since

vignettes are documentation to assist developers during package

usage. 33% of “Tests” checks also indicated avoidance, aligned to

the trend of tampering coverage calculations through comments.

Using the question’s posting year, Figure 3 summarises the

attitudinal trend (mined in March 2021, reflecting a proportion

of that year). Enquiries increased in 2015 and 2020 when the posts

doubled compared to previous years. The posts did not provide

enough data to understand the reasons behind the increase. In 2014,

avoidance and fixing attitudes were almost equalled.

Figure 3: Attitudes about CRAN checks per year.

Table 1 summarises the most affected checks by attitude. The

results are concerning since CRAN’s checks are mandatory for

submission, and both rOpenSci and BioConductor use them in their

review process (ran automatically upon submission, or through

BioChecks, respectively). In both cases, checks are a pre-filter

before reviewers peer-review the package and occasionally steer

the discussion (e.g., regarding formatting guidelines) [3].

Table 1: Common checks in SO, by attitude and posts counts.

Check Fix (Posts #) Avoid (Posts #)

R code for possible problems 27 7
Package dependencies 21 11

Whether package ‘XYZ’ can be installed 17 4
CRAN incoming feasibility 9 4

5 DISCUSSION & PROPOSALS

Overall, 8.3% of SATD comments reveal miscalculations of

coverage. Although a coverage threshold for R packages remains

undefined, their testing quality is low [15]. Given R’s data science

nature, this knowledge would benefit the community. Proposal:

Coverage is not a good measurement for testing quality [17], thus,

CRAN-checking the number of tested alternative paths would be

more suitable, reinforcing the testing of edge/uncommon cases [15].

“R Code" is the most problematic and discussed check since it

tackles code quality and introduces “Build", “Code", and “Defect

Debt". Most are not aligned with R’s tidyverse notation, forcing
developers to do a workaround to avoid the note if using this

syntax. Proposal: These checks are the widest, including design

aspects (e.g., object-oriented consistency, replacement features),

build aspects (e.g., dependencies), and generic code problems (e.g.,

syntax errors, non-ASCII characters). These should be specialised

to give developers more specific information about the problem.

572



ICPC 2022, May 21–22, 2022, Pittsburgh, PA, USA Kumar, et al.

Aligning these checks with known TD types will be valuable given

that there are R-specific taxonomies [3]. Proposal: tidyverse’s

usage has grown considerably; by May 2020, dplyr was the third
most-downloaded package, with other tidyverse packages being
in April’s 2021 Top 20. Including tidyverse-friendly check to avoid
false-positive warnings would be benefit R developers.

Other checks appear briefly alongside SATD, but are prominent

in SO. Checks such as “Description” and “Namespace” relate to

standardised aspects and CRAN’s standards [18], and may not be

perceived until the developers decide to publish in CRAN. While

some developers do not comment about these fixes, there may be

minor discrepancies between the CRAN and GitHub versions of

the same package. Proposal: Investigating developers’ perceptions

about CRAN checks through surveys or interviews. Corroborate

if the avoidance of continuous fixing for specific checks leads to

outdated GitHub repositories compared to CRAN versions.

“Check package dependencies" (inside “Description")

considers dependencies installation, packages numbers, cyclic

dependencies, consistency with the Namespace file [18]; near a

third of queries tended to avoid. Previous studies demonstrated

that in R’s package-based environment, installation issues are

transitive (a package no longer passing checks breaks the packages

depending on it) [1, 7]. Others demonstrated the continuous

growth of links between packages [14], while SATD comments

indicate imported packages may force developers to bypass the

problems of imported packages [16]. This relates to “check whether

package XYZ can be installed" since all dependencies must be

successfully installed, which a quarter of enquires tended to avoid.

Proposal: The Namespace file is automatically modified (through

roxygen2’s system), but the Description is updated through a

command and read in the checks reports. Incorporating automated

suggestions (like Maven/Gradle projects do) would be helpful.

Proposal: Package installation issues depend on the operative

system–a check passing in CRAN’s servers may not pass on a

private environment or vice-versa. Although tools were proposed

[2], no recent efforts assess this issue. Investigating “Installation"

and “Build Debt" in packages is essential, given its package-based

nature and its effects in package builds [1].

“Check R code for possible problems" compounds syntax

quality issues [18], and about a fifth SATD comments tended to

avoid. CRAN interprets imported packages’ variables as global if

not called with the double-colon operator (package::variable)5.
Although somewhat related to dependencies, the check’s message is

unclear. Proposal: Many notes have unrelated messages, leading to

a challenging debugging process. Clear messages with error codes

would assist the developers, possibly developed and refined through

a community effort.

“Check CRAN incoming feasibility" performs format checks

(e.g., versioning, licensing, spelling mistakes) including warnings

for CRAN maintainers [18]. A third of the posts avoided or ignored

these checks. Proposal: Three-quarters of avoiding posts discussed

maintainers-specific checks6. These checks simplify the (manual)

internal process but are misunderstood by new developers and

clog checks’ lists with unneeded information. Only maintainers

5Example: https://tinyurl.com/cran-example-1
6Example: https://tinyurl.com/cran-example-2

should see this check. Proposal: Regarding spelling problems,

CRAN detected non-ASCII authors’ names as a grammatical

error7. Non-ASCII characters in the Description file’s Authors or
Authors@R section should be ignored. Understandably, package

titles should remain ASCII-only.

6 THREATS TO VALIDITY

Construct. 𝐷1’s TD types were validated in a prior study and

subject to those threats [16].

Internal. The independent classification and agreement

discussion between authors reduced researcher bias; CKs were

always higher than 0.79, indicating a strong agreement [3]. The
initial comments filtering (phases 1.1-1.2) excluded the code, but

threats were minimised by having two authors analyse it. Through

the number of comments is small, they are representative of current

R packages (extracted from 500 packages, accounting for over 160k

comments [16]). Regarding SO, our dataset included posts tagged (in

SO) as cran. It is possible a miss-tag occurred (incorrectly tagged or
a relevant post without the tag); however, we assumed the accuracy

of SO’s curators regarding tag edition.

External. The comments dataset was extracted from over 500

[16]; SO’s dataset had about 200 records which, even if they

represent all of SO’s cran-tagged posts, remains a small sample.
Regarding other communities, RStudio Community only had 36

CRAN posts without the check-related filtering, and the mailing list

restricts who can participate. Although our results are generalisable

for R packages, they do not apply to R scripts or RMarkdown.

Likewise, though our findings are relevant for the R community,

similar environments (e.g., npm or PyPi) cannot directly apply them.

7 CONCLUSION

This paper presents a preliminary investigation about R developers’

approach to CRAN’s checks, analysing source code comments and

StackOverflow’s (SO) posts.

We uncovered a tendency to tamper coverage measurements,

affecting CRAN’s checks results. Checks related to “R Code" are

frequent in source code comments and SO posts, with “Description",

“Vignettes", and “Package Structure" mentioned mainly in SO.

About a quarter of SO discussions aim to bypass checks through

a workaround instead of fixing it, and the most affected checks

relate to dependencies, installation, feasibility and possible code

problems; a third of the dependency-related discussions tend to

avoid. We also proposed nine future works for the R community to

improve or adjust CRAN checks.

Detecting issues through mandatory vetting tests is relevant

to communities that currently do not enforce them (e.g., PyPi),

as it uncovers issues prior to package distribution. Moreover, our

results warn community-led efforts for package peer-review that are

currently using automated checks as part of their review process.

The most critical future work is analysing how the developers’

attitude (fix or avoid) affects packages’ quality (i.e., “Build TD")

and the transitivity of such effects (i.e., also impacting packages

depending on the target one). Future works should extend into

analysing non-compulsory, developer-led checks and their effect

on other platforms (e.g., PyPi or npm).

7Example: https://tinyurl.com/cran-example-3

573



On the Developers’ Attitude Towards CRAN Checks ICPC 2022, May 21–22, 2022, Pittsburgh, PA, USA

REFERENCES
[1] Elvira-Maria Arvanitou, Apostolos Ampatzoglou, Alexander Chatzigeorgiou, and

Jeffrey C. Carver. 2021. Software Engineering Practices for Scientific Software
Development: A Systematic Mapping Study. Journal of Systems and Software 172
(2021), 110848. https://doi.org/10.1016/j.jss.2020.110848

[2] Maëlick Claes, Tom Mens, and Philippe Grosjean. 2014. On the Maintainability
of CRAN Packages. In IEEE Conference on Software Maintenance, Reengineering,
and Reverse Engineering (CSMR-WCRE). IEEE, Antwerp, Belgium, 308–312. https:
//doi.org/10.1109/CSMR-WCRE.2014.6747183

[3] Zadia Codabux, Melina Vidoni, and Fatemeh Fard. 2021. Technical Debt in
the Peer-Review Documentation of R Packages: a rOpenSci Case Study. In
International Conference on Mining Software Repositories. IEEE, Madrid, Spain.

[4] Marco D’Ambros and Romain Robbes. 2011. Effective Mining of Software
Repositories. In 27th IEEE International Conference on Software Maintenance.
IEEE, USA, 598–598. https://doi.org/10.1109/ICSM.2011.6080839

[5] Mário André de Freitas Farias, Manoel Gomes de Mendonça Neto, Marcos
Kalinowski, and Rodrigo Oliveira Spínola. 2020. Identifying Self-Admitted
Technical Debt Through Code Comment Analysis with a Contextualized
Vocabulary. Information and Software Technology 121 (2020), 106270. https:
//doi.org/10.1016/j.infsof.2020.106270

[6] Ariel Deardorff. 2020. Why do Biomedical Researchers Learn to Program? An
Exploratory Investigation. Journal of the Medical Library Association : JMLA 108,
1 (Jan 2020), 29–35. https://doi.org/10.5195/jmla.2020.819

[7] Alexandre Decan, Tom Mens, Maëlick Claes, and Philippe Grosjean. 2016. When
GitHub Meets CRAN: An Analysis of Inter-Repository Package Dependency
Problems. In 23rd International Conference on Software Analysis, Evolution, and
Reengineering (SANER), Vol. 1. IEEE, Osaka, Japan, 493–504. https://doi.org/10.1
109/SANER.2016.12

[8] James Howison, Ewa Deelman, Michael J. McLennan, Rafael Ferreira da Silva,
and James D. Herbsleb. 2015. Understanding the Scientific Software Ecosystem
and its Impact: Current and Future Measures. Research Evaluation 24, 4 (07 2015),
454–470. https://doi.org/10.1093/reseval/rvv014

[9] James Howison and James D. Herbsleb. 2011. Scientific Software Production:
Incentives and Collaboration. In ACM Conference on Computer Supported
Cooperative Work (Hangzhou, China) (CSCW ’11). ACM, New York, USA, 513–522.
https://doi.org/10.1145/1958824.1958904

[10] Pranjay Kumar, Davin Ie, and Melina Vidoni. 2022. CRAN Checks’ Avoidance.
https://doi.org/10.5281/zenodo.6342280

[11] Jiangshan Lai, Christopher J. Lortie, Robert A. Muenchen, Jian Yang, and Keping
Ma. 2019. Evaluating the Popularity of R in Ecology. Ecosphere 10, 1 (2019),
e02567. https://doi.org/10.1002/ecs2.2567

[12] SolomonMensah, Jacky Keung, Jeffery Svajlenko, Kwabena Ebo Bennin, and Qing
Mi. 2018. On the Value of a Prioritization Scheme for Resolving Self-Admitted
Technical Debt. Journal of Systems and Software 135 (2018), 37–54. https:
//doi.org/10.1016/j.jss.2017.09.026

[13] Junior Cesar Rocha, Vanius Zapalowski, and Ingrid Nunes. 2017. Understanding
Technical Debt at the Code Level from the Perspective of Software Developers.
In Proceedings of the 31st Brazilian Symposium on Software Engineering (Fortaleza,
CE, Brazil) (SBES’17). Association for Computing Machinery, New York, NY, USA,
64–73. https://doi.org/10.1145/3131151.3131164

[14] Stefan Theußl, Uwe Ligges, and Kurt Hornik. 2011. Prospects and Challenges in
R Package Development. Computational Statistics 26, 3 (01 Sep 2011), 395–404.
https://doi.org/10.1007/s00180-010-0205-5

[15] M. Vidoni. 2021. Evaluating Unit Testing Practices in R Packages. In 43rd
International Conference on Software Engineering (ICSE). IEEE, Madrid, Spain,
1–12.

[16] M. Vidoni. 2021. Self-Admitted Technical Debt in R Packages: An Exploratory
Study. In International Conference on Mining Software Repositories. IEEE, Madrid,
Spain.

[17] Tássio Virgínio, Railana Santana, Luana Almeida Martins, Larissa Rocha Soares,
Heitor Costa, and Ivan Machado. 2019. On the Influence of Test Smells on Test
Coverage. In XXXIII Brazilian Symposium on Software Engineering (Salvador,
Brazil) (SBES 2019). Association for Computing Machinery, USA, 467–471. https:
//doi.org/10.1145/3350768.3350775

[18] Hadley Wickham. 2015. R Packages (1st ed.). O’Reilly Media, Inc., USA.
[19] T. Xiao, D. Wang, S. Mcintosh, H. Hata, R. Kula, T. Ishio, and K. Matsumoto.

5555. Characterizing and Mitigating Self-Admitted Technical Debt in Build
Systems. IEEE Transactions on Software Engineering X, 1 (sep 5555), 1–1. https:
//doi.org/10.1109/TSE.2021.3115772

574


