
Association for
Computing Machinery

November 18, 2022
Singapore, Singapore

MSR4P&S ’22
Proceedings of the 1st International Workshop on

Mining Software Repositories Applications for
Privacy and Security

Edited by:

Melina Vidoni, Nicolás E. Díaz Ferreyra, and Zadia Codabux

Sponsored by:

ACM SIGSOFT, National University of Singapore
Co-located with:

ESEC/FSE ’22

Association for Computing Machinery, Inc.
1601 Broadway, 10th Floor
New York, NY 10019-7434

USA

Copyright © 2022 by the Association for Computing Machinery, Inc (ACM). Permission to make digital or hard
copies of portions of this work for personal or classroom use is granted without fee provided that the copies are not
made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the
first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with
credit is permitted.

To copy otherwise, to republish, to post on servers or to redistribute to lists, requires prior specific permission and/or
a fee. Request permission to republish from: Publications Dept. ACM, Inc.
Fax +1-212-869-0481 or E-mail permissions@acm.org.

For other copying of articles that carry a code at the bottom of the first or last page, copying is permitted provided
that the per-copy fee indicated in the code is paid through the Copyright Clearance Center, 222 Rosewood Drive,
Danvers, MA 01923, USA.

ACM ISBN: 978-1-4503-9457-4

Cover photo:
Title: “Helix Bridge and Marina Bay Sands”
Photographer: Erwin Soo
License: Creative Commons Attribution 2.0 Generic
https://creativecommons.org/licenses/by/2.0/deed.en
Cropped from original:
https://commons.wikimedia.org/wiki/File:Helix_Bridge_and_Marina_Bay_Sands_(8061798457).jpg

Production: Conference Publishing Consulting
D-94034 Passau, Germany, info@conference-publishing.com

https://creativecommons.org/licenses/by/2.0/deed.en
https://commons.wikimedia.org/wiki/File:Helix_Bridge_and_Marina_Bay_Sands_(8061798457).jpg

Welcome from the Chairs

On behalf of the Program Committee, we are pleased to present the proceedings
of the 1st International Workshop on Mining Software Repositories for Privacy
and Security (MSR4P&S 2022). MSR4P&S is co-located with the ACM Joint Euro-
pean Software Engineering Conference and Symposium on the Foundations of
Software Engineering (ESEC/FSE). This year, because of the Covid-19 pandemic,
MSR4P&S (as part of ESEC/FSE) is held virtually with an adapted program that
will bring together international researchers to exchange ideas, share experiences,
investigate problems, and propose promising solutions concerning the application
of Mining Software Repositories (MSR) to investigate the different stages of privacy
and security. The workshop topics cover a wide range of MSR applications for
cybersecurity research, including empirical and mixed-method approaches, as well
as datasets and tools.

The last decades have put Privacy and Security (P&S) in the spotlight of in-
formation technology as data breaches, and cyberattacks have spiked globally.
However, P&S are often afterthoughts in software development as their benefits
are sometimes difficult to demonstrate and their costs hard to justify. However,
this issue is becoming hard to sustain as new legal frameworks such as the EU
General Data Protection Regulation (GDPR) demand companies to incorporate
P&S features (e.g., transparency, anonymity, and informed consent) at the core of
their products. Hence, there is an urgent call for tools and methods supporting the
elicitation and deployment of P&S requirements in a by-design approach.

P&S are multifaceted and complex research areas spanning different knowl-
edge domains (e.g., engineering, law, and psychology). Challenges in P&S cannot
be solely addressed from a single viewpoint as they often involve human fac-
tors, technological artefacts, and regulatory/legal frameworks. The quest for
P&S solutions requires in-deep knowledge and actionable information about its
users/stakeholders, vulnerabilities/flaws, and potential attackers. MSR techniques
can support this quest by providing the means to understand the P&S dimensions
of information systems, thus helping shape privacy- and security-friendly soft-
ware. MSR4P&S aims to explore the application of MSR at different stages of P&S
engineering.

MSR4P&S 2022 received five submissions - two short papers and three full pa-
pers. Each paper submission was reviewed by three Program Committee members
and followed by an internal discussion. At the end of the review process, all five
papers were accepted as full papers. We want to thank the members of the Program
Committee for providing constructive feedback in a timely fashion. The reviews
and discussions were constructive in finalising the decisions for the submissions.
The reviews were also beneficial for the authors of all the submissions to improve
their work.

iii

This year’s edition features an exciting opportunity for those working at the
intersection of privacy and security on collaborative software environments and
open-source, leveraging or studying the increasingly-popular methodology of
mining software repositories. We also featured a Keynote by Prof Ali Babar from
the University of Adelaide, CREST Centre.

Lastly, we would like to thank the ESEC/FSE 2022 organisation for allowing us
to organise this workshop. They have been very supportive throughout the entire
process to allow us to better prepare for the workshop.

October 2022 MSR4P&S 2022 Organising Committee

MSR4P&S 2022 Organisation

Organising Committee, General Chairs
Melina Vidoni. Australian National University, School of Computing. Australia.
Nicolás Díaz Ferreyra. Hamburg University of Technology, Institute of Software
Security. Germany.
Zadia Codabux. University of Saskatchewan, Dept. of Computer Science. Canada.

Program Committee Members
Muhammad Ikram. Macquarie University. Australia
Tosin Daniel Oyetoyan. Western Norway University. Norway.
Daniela Cruzes. NTNU. Norway.
Vahideh Moghtadaiee. Shahid Beheshti University. Iran.
Sascha Fahl. CISPA. Germany.
Natalia Stakhanova. University of Saskatchewan. Canada.
Kazi Zakia Sultana. Montclair State University. United States.
Diego Costa. Concordia University. Canada.
Clemente Izurieta. Montana State University. United States.
Max Young. Mississippi State University. United States.
Mariana Peixoto. Federal University of Pernambuco. Brazil.
Jose del Alamo. Universidad Politécnica de Madrid. Spain.
Gabriel Pedroza. CEA LIST. France.
Triet Le. University of Adelaide, CREST. Australia
Maritta Heisel. University Duisburg-Essen. Germany.
Nicola Zannone. Eindhoven University of Technology. Netherlands.

iv

Contents
Frontmatter
Welcome from the Chairs . iii

Keynote
Mining Software Repositories for Security: DataQuality Issues Lessons from Trenches (Keynote)

Muhammad Ali Babar — University of Adelaide, Australia . 1

Assessing Privacy
Mining Software Repositories for Patternizing Attack-and-Defense Co-Evolution

Samiha Shimmi and Mona Rahimi — Northern Illinois University, USA . 2
Assessing Software Privacy using the Privacy Flow-Graph

Feiyang Tang and Bjarte M. Østvold — Norwegian Computing Center, Norway . 7

Vulnerabilities
An Exploratory Study on the Relationship of Smells and Design Issues with Software Vulnerabilities

Sahrima Jannat Oishwee, Zadia Codabux, and Natalia Stakhanova — University of Saskatchewan, Canada 16
Counterfeit Object-Oriented Programming Vulnerabilities: An Empirical Study in Java
Joanna C. S. Santos, Xueling Zhang, and Mehdi Mirakhorli — University of Notre Dame, USA; Rochester Institute of Technology, USA 21

SecurityEval Dataset: Mining Vulnerability Examples to Evaluate Machine Learning-Based Code Generation Techniques
Mohammed Latif Siddiq and Joanna C. S. Santos — University of Notre Dame, USA . 29

Author Index . 34

v

Mining Software Repositories for Security:
DataQuality Issues Lessons from Trenches

(Keynote)
Muhammad Ali Babar
University of Adelaide

Australia
ali.babar@adelaide.edu.au

ABSTRACT
Software repositories are an attractive source of data for under-
standing the burning security issues challenging developers, anec-
dotal solutions, and building AI/ML-based models and tools. That is
why there is exponential growth in the literature based on mining
software repositories for software security. While the abundance
of freely available data for research is a fortune, the data quality
issues can make software repositories minefields capable of blow-
ing any time and effort budget for a project. Our group has been
active in this area for the last few years to develop knowledge, un-
derstanding, and tools for improving software security by mining
repositories. Through a mix of successful and failed efforts, we have
experienced firsthand what is called “garbage in, garbage out” due
to poor data quality. Without fully appreciating the data quality
issues, starting a data-driven software security project can be frus-
trating and disheartening for a research team. We believe engaging
the relevant stakeholders in developing and sharing knowledge
and technologies to improve software security data quality is cru-
cial. To this end, we are not only systematically identifying and
synthesizing the existing empirical literature on improving data
quality but also devising innovative solutions for addressing the
data quality challenges while mining software repositories for soft-
ware security. This talk will draw lessons and recommendations
from our efforts of systematically reviewing the state-of-the-art
and developing solutions for improving data quality while building
knowledge, understanding, and tools for supporting software secu-
rity. The talk will use a selected set of our studies to demonstrate the
concrete cases of the challenges faced and the used workarounds
to successfully continue our journey of learning and improving in
this line of research and practice.
ACM Reference Format:
Muhammad Ali Babar. 2022. Mining Software Repositories for Security:
Data Quality Issues Lessons from Trenches (Keynote). In Proceedings of the
1st International Workshop on Mining Software Repositories Applications for
Privacy and Security (MSR4P&S ’22), November 18, 2022, Singapore, Singapore.
ACM, New York, NY, USA, 1 page. https://doi.org/10.1145/3549035.3570192

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
MSR4P&S ’22, November 18, 2022, Singapore, Singapore
© 2022 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9457-4/22/11.
https://doi.org/10.1145/3549035.3570192

BIOGRAPHY
M. Ali Babar is a Professor in the School of Computer Science, Uni-
versity of Adelaide, Australia. He leads a theme on architecture
and platform for security as service in CyberSecurity Coopera-
tive Research Centre, a large initiative funded by the Australian
government, industry, and research institutes. Prior to joining the
University of Adelaide, he was a Reader in Software Engineering
with the School of Computing and Communication at Lancaster
University, UK. After joining the University of Adelaide, Prof Babar
established an interdisciplinary research centre called CREST (Cen-
tre for Research on Engineering Software Technologies), where
he directs the research and education activities of more than 30
researchers and engineers in the areas of Software Systems En-
gineering, Security and Privacy, and Social Computing. Professor
Babar’s research team draws a significant amount of cash funding
and in-kind resources from governmental and industrial organi-
sations. Professor Babar has authored/co-authored more than 270
peer-reviewed research papers at premier Software journals and
conferences. Professor Babar obtained a Ph.D. in Computer Science
and Engineering from the school of computer science and engineer-
ing of University of New South Wales, Australia. He also holds a
M.Sc. degree in Computing Sciences from University of Technology,
Sydney, Australia.

1

https://orcid.org/0000-0001-9696-3626
https://doi.org/10.1145/3549035.3570192
https://doi.org/10.1145/3549035.3570192

Mining Software Repositories for Patternizing
Attack-and-Defense Co-Evolution∗

Samiha Shimmi
Northern Illinois University

DeKalb, USA
sshimmi@niu.edu

Mona Rahimi
Northern Illinois University

DeKalb, USA
mrahimi1@niu.edu

ABSTRACT
Several evidence indicates that malicious cyber actors learn, adapt,
or, in other words, react to the defensive measures put into place
by the cybersecurity community, as much as system defenders
react to attacks. To this end, this research aims to mine the existing
software repositories to document patterns of co-evolution, which
appear between the cyber attacker and defender, as attack-and-
defend adaptations, for the purpose of determining the probability
of attackers’ responsive actions.

CCS CONCEPTS
• Software and its engineering→ Software safety.

KEYWORDS
Software security, Attack and defense co-evolution patterns, Mining
software repository
ACM Reference Format:
Samiha Shimmi and Mona Rahimi. 2022. Mining Software Repositories for
Patternizing Attack-and-Defense Co-Evolution. In Proceedings of the 1st In-
ternationalWorkshop onMining Software Repositories Applications for Privacy
and Security (MSR4P&S ’22), November 18, 2022, Singapore, Singapore. ACM,
Singapore, Singapore, 5 pages. https://doi.org/10.1145/3549035.3561181

1 INTRODUCTION
The Federal Networking and Information Technology R&D (NITRD)
working group defines moving target research as technologies that
will enable defenders to “create, analyze, evaluate, and deploy mech-
anisms and strategies that continually shift and change over time to
increase complexity and cost for attackers”. The main idea is simple,
stating that in the case of static systems, the attacker is able to learn
the system and consequently evolve his attack to the system. Hence
to prevent the success of the evolved attacks, the system is required
to similarly adapt and evolve. To this end, we propose to study and
exploit patterns of co-evolution between cybersecurity attacks and
defends to enable defenders to strategically position themselves
ahead of cyber threats.
∗This work is funded by the Office of Naval Research (ONR), Division of Cyber Security
and Complex Software Systems (Grant#:N00014-22-1-2553).

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
MSR4P&S ’22, November 18, 2022, Singapore, Singapore
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9457-4/22/11. . . $15.00
https://doi.org/10.1145/3549035.3561181

As illustrated in Figure 1, thinking of cyber attack-defense as a
chess contest among two opponents, 𝑎 (the defensive) and 𝑏 (the
cyber attacker), 𝑏 exploits an existing vulnerability, exposed by 𝑎, to
attack. Later, player 𝑎 takes an action in response to the initial attack
by 𝑏. In such scenarios, both 𝑎 and 𝑏 evolve their strategies based on
the actions taken by the other side. As such, there are correlations
among the evolution of 𝑎’s and 𝑏’s actions. We propose to take
advantage of the attack-defend-attack co-evolution phenomenon
by focusing on an understanding of the attacker’s response to
defensive measures in the context of the attacker’s mission goals
and objectives. Developing an understanding of these missions and
goals will generate greater predictive analysis capabilities and, more
importantly, better means to influence the attacker’s evolution in a
manner that plays into cyber-defensive strengths.

The co-evolution phenomenon frequently occurs within soft-
wares’ artifacts. For example changes initiated at the requirements
level, are followed by changes in the source code which then require
corresponding updates in the test suite. Hence, while co-evolution
is primarily a biological concept, here the term “co-evolution” refers
to the mutualistic evolution of pairs of software artifacts.

While the state-of-the-art of software maintenance focus almost
entirely on the evolution, occurring between pairs of attacks and
defense, here, we propose to instead infer and leverage the patterns
of corresponding evolution between attack-defend-attack triplets.
Leveraging the patterns of co-evolution between the type of the
attacks, defense, and subsequent attack will ultimately lead to au-
tomating the evolution of software’s robustness over time.

The long term outcome of this work constitutes a paradigm shift
in the development of automated evolutionary and defensive tech-
niques in response to the malicious attacks. This research aims
to lay the foundation of a complete transformation into develop-
ing ‘self-robusting software’, through leveraging the co-evolution
patterns between the software artifact pairs.

2 PROBLEM DEFINITION
Considering Figure 1, the problem of predicting an evolving at-
tack is defined as predicting a probability distribution of potential
𝑉𝑢𝑙𝑛𝑒𝑟𝑎𝑏𝑖𝑙𝑖𝑡𝑦𝑏2 , given the 𝑉𝑢𝑙𝑛𝑒𝑟𝑎𝑏𝑖𝑙𝑖𝑡𝑦𝑏1 and 𝑃𝑎𝑡𝑐ℎ𝑎1 . This can
be written as below:

𝑃 (𝑉𝑢𝑙𝑛𝑒𝑟𝑎𝑏𝑖𝑙𝑖𝑡𝑦𝑏2 | 𝑉𝑢𝑙𝑛𝑒𝑟𝑎𝑏𝑖𝑙𝑖𝑡𝑦𝑏1 𝑎𝑛𝑑 𝑃𝑎𝑡𝑐ℎ𝑎1) (1)

There are multiple dependencies among the variables of this distri-
bution, identified as assumptions below:

• 𝐴𝑠𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛1 :𝐴𝑠𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛1 :𝐴𝑠𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛1 :𝑉𝑢𝑙𝑛𝑒𝑟𝑎𝑏𝑖𝑙𝑖𝑡𝑦𝑏2 depends on𝑉𝑢𝑙𝑛𝑒𝑟𝑎𝑏𝑖𝑙𝑖𝑡𝑦𝑏1 .
• 𝐴𝑠𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛2 :𝐴𝑠𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛2 :𝐴𝑠𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛2 : 𝑉𝑢𝑙𝑛𝑒𝑟𝑎𝑏𝑖𝑙𝑖𝑡𝑦𝑏2 depends on 𝑃𝑎𝑡𝑐ℎ𝑎1 .
• 𝐴𝑠𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛3 :𝐴𝑠𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛3 :𝐴𝑠𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛3 : 𝑃𝑎𝑡𝑐ℎ𝑎1 depends on 𝑉𝑢𝑙𝑛𝑒𝑟𝑎𝑏𝑖𝑙𝑖𝑡𝑦𝑏1 .

We divided the problem into two smaller problems to conquer:

2

https://doi.org/10.1145/3549035.3561181
https://doi.org/10.1145/3549035.3561181

MSR4P&S ’22, November 18, 2022, Singapore, Singapore Samiha Shimmi and Mona Rahimi

2.1 Identification of Vulnerability
To accurately identify potential vulnerabilities, present in a code
snippet, we apply a pipeline of supervised learning techniques
to train a deep learning (DL) model for detecting each type of
vulnerability. The output of the binary classifier is intended to be a
probabilistic positive and negative predictions.

While the state-of-the-art research almost entirely focuses on
training classifiers either on the semantic or on the syntactic prop-
erties of the source code, we build a data-driven model based on the
both properties. The reason is that each class of properties captures
particular characteristics and convey complementing information
about code fragments. The semantic properties will preserve the
meaning of the keywords, while the syntactic characteristics distin-
guishes code from natural language and preserves the properties
of the code structure. The properties and our means for their iden-
tification are further discussed in details in Section 5.

Player a
host

Player b
attacker

(i) 𝑊𝑒𝑎𝑘𝑛𝑒𝑠𝑠𝒂𝟏 exposure

(ii) 𝑉𝑢𝑙𝑛𝑒𝑟𝑎𝑏𝑖𝑙𝑖𝑡𝑦𝒃𝟏

(iii) 𝑊𝑒𝑎𝑘𝑛𝑒𝑠𝑠𝒂𝟏 patching

(iv) 𝑉𝑢𝑙𝑛𝑒𝑟𝑎𝑏𝑖𝑙𝑖𝑡𝑦𝒃𝟐

Figure 1: A high-level illustration of the problem.

2.2 Identification of (Vulnerability, Patch) Pairs
To identify the associating patches with each vulnerability, we ex-
ploit publicly accessible security databases of vulnerabilities and
fixes, such as Common Vulnerabilities and Exposures (CVE) data-
base, as well as mining shared repositories, such as Github. Ana-
lyzing a large set of git commits and their structural and semantic
differences, we will identify frequent patterns in source code, lead-
ing to particular patterns of vulnerabilities, and further frequent
patterns of following changes, addressing the vulnerability issues.

To determine the causal implications of the corresponding pat-
terns of evolution in attacks and fixes, we plan to use statistical
analysis. A potential solution is the negative binomial regression
(NBR) modeling [2] as used in similar prior studies [22]. We choose
NBR because it allows us to assess the relationship between a re-
sponse (defends) and different predictors (the use of a particular
pattern) while processing data over-dispersion [22]. To potentially
gain deeper knowledge about the identified co-evolution patterns,
we plan to also consider a few other predictors (e.g., #total commits,
size of the system, system age). To deal with the imbalance of the
predictors (e.g., the identified patterns may be represented by vary-
ing numbers of sample), we use weighted effects coding [20]. With
this method, each regression coefficient indicates the relative effect
of the use of a particular pattern on the response as compared to
the weighted mean of the dependent variable across all samples.
In addition, we use a Chi-Square [6] test to check the dependence
between two predictors and in a case of dependence, use an r×c
equivalent of the phi coefficient to compute the effect size [7].

2.3 Identification of Next Vulnerability
Given (𝑉𝑢𝑙𝑛𝑒𝑟𝑎𝑏𝑖𝑙𝑖𝑡𝑦𝑏1 , 𝑃𝑎𝑡𝑐ℎ𝑎1) pairs, the objective is to identify
potential vulnerabilities. We train LSTM-based AI models for the
prediction of triplets of (𝑉𝑢𝑙𝑛𝑒𝑟𝑎𝑏𝑖𝑙𝑖𝑡𝑦𝑏1 , 𝑃𝑎𝑡𝑐ℎ𝑎1 ,𝑉𝑢𝑙𝑛𝑒𝑟𝑎𝑏𝑖𝑙𝑖𝑡𝑦𝑏2),
assuming that the 𝑉𝑢𝑙𝑛𝑒𝑟𝑎𝑏𝑖𝑙𝑖𝑡𝑖𝑒𝑠 𝑏1 and 𝑏2 are dependent. This
phase will generate the attack-defense co-evolution patterns with
the help of unsupervised learning.

Recently the use of an old architecture, long short-term Memory
(LSTM), for recurrent neural networks (RNN) showed several suc-
cess [12]. LSTM enables the model to learn long-term dependencies
and therefore, allows to leverage the information of previous predic-
tions in the current prediction. As such, LSTM-based RNNs are used
to predict the sequence of words, images, and video frames [13]. For
instance, a research used LSTM RNNs for sequence-to-sequence
(seq2seq) translation of English to French [26].

The attempt of this research, in general, is to enable the AI model
to construct a set of potential vulnerable triplets, to detect which
vulnerability will be most likely to be initiated by the attacker, in
response to the patching action, previously taken by the defender.
The output product of this research will be a framework, including
the algorithms and tools, which receives subsequent versions of
software artifacts (e.g. logged data, source code) and extracts a
set of both semantic (e.g., method name changes) and structural
properties (e.g., method calls changes), according to the patterns of
attacks we previously documented. These properties are then fed
to a predictive model (previously trained on the historical data) as
the independent variables to classify the changes as “potentially
a threat” or otherwise. The model will not be a binary classifier,
instead measures the probability that the instance could belong to
each category. The discoveries of the model will be generated in
the form of textual reports of the models decision and the most
significant properties which influenced the model’s decision and
could also be visualized in the form of an evolutionary graph to
improve readability.

3 MINING SOFTWARE REPOSITORIES
The data-driven AI models critically rely on the large amount of
data. In addition, the data, based on which the models are trained,
is required to be in a consistent format. Furthermore, since the DL
process rely on statistical methods, it is necessary for the data to
be in a continuous numerical format, representing the values of
data points in a shared scale. In this regard we foresee two primary
challenges:

(1) Creating an acceptably large dataset (of attacks and fixes)
to infer the patterns of co-evolution and to train a DL model for
identifying the semantic properties of the common patterns. While
thousands of such attacks and vulnerabilities are reported each year
to CVE—currently contains 162,108 cases as of October 2021—but
limited sources are available for the practical fixes of the listed
vulnerabilities. A few publicly available academic repositories, such
as [5], provide a dataset containing source code fixes for CVEs
by providing detailed information at different interlinked levels of
abstraction, such as the commit-, file-, method-, repository- and
CVE-levels. Yet, the publicly available fixes datasets are not large
enough to train a precise DL model.

3

Mining Software Repositories for Patternizing Attack-and-Defense Co-Evolution MSR4P&S ’22, November 18, 2022, Singapore, Singapore

(2) Mining software repositories for attack-patch pairs leads to a
wide range of various-type artifacts in heterogeneous formats, such
as natural language description and log, source code, and unit tests.
to exacerbate this issue these different types of information are as
well scattered over several incompatible cross-sources. For instance,
CVE database and National Vulnerability Database (NVD) are two
database that are synchronized with each other but have different
formats. Additionally each CommonWeakness Enumeration (CWE)
record can be mapped to a set of CVE entries. Furthermore, the
Common Attack Pattern Enumeration and Classification (CAPEC)
is a publicly available dataset, providing common attack patterns
to help the users understand how a weakness can be exploited.
Finally, another resource is the SARD dataset which provides a set
of synthetic, production, or academic sample artifacts.

The majority of DL models are enabled to process homogeneous
artifacts as a source of information [23]. For instance, multiple
studies focused on processing source code [23], while a few others
limited their studies to the binary code [27] and several processed
the natural language definition of the vulnerabilities [32, 33]. This
is a primary limitation for the application of AI in the domain, since
the available knowledge of vulnerabilities and fixes are incorpo-
rated in a various types of artifacts, such as the description of the
underlying weaknesses, the code examples, test cases shared across
the internet, the reports, and systems log files. To train any reliable
data-driven model, a type-agnostic AI framework is necessary, en-
abled to derive information from several heterogeneous sources,
such as statements in NL on the CWE and CVE, source code on the
NVD shared repositories and test suits from SARD.

To overcome these limitations, we propose an iterative and incre-
mental process, to actively mine the available software repositories
and augment the existing datasets through creating a large record
of attack and fix pairs. For this purpose, we develop a framework,
which initially extract any reported project in CVE records from
their open-access git repositories. The process will retrieve commit
logs, code changes, and related code comments from GitHub for
these applications. To tackle the heterogeneity of the artifacts, we
propose to adopt multimodal machine learning, which integrates
andmodels multiple communicativemodalities, including linguistic,
acoustic and visual messages.

This said, we initially re-train a pre-trained multimodal neural
network (e.g., CodeBERT [8]), developed to process both program-
ming language and natural language in a common space, with
security-specific artifacts, The model is then applied to semanti-
cally summarize a set of code commit data. Further, the semantic
similarity of committed changes to the records of CWE catalog is
computed. Finally, the best-matched category is mapped to the cor-
responding set of commits, as a potential fix for the weakness. We
will make the dataset publicly available for the use of the other re-
searchers in the domain, once we lay the foundation of the research
discussed here based on the dataset.

4 PATTERNS OF CO-EVOLUTION
Software artifacts co-evolution take various forms with respect to
its underlying reason. This section describes the classification of

software co-evolutions in three categories, based on our observa-
tions in our previous research projects [15–19, 24, 25]:

(i) Consistency co-evolution: Software systems are charac-
terized by continual internal change, which in turn, results in in-
consistency between software artifacts. To prevent the artifacts
inconsistency, the ideal solution is to concurrently evolve the as-
sociated impacted artifacts. For instance, software requirements,
source code and test suite can be considered as three separate arti-
facts, but they are tied intrinsically by co-evolution, meaning that
when new requirements are added or when the source code is mod-
ified, either during development or maintenance, often new test
cases are needed for newly added functionalities. Additionally, the
impacted test cases need to be adapted to the change so that the
source and test code remain consistent. We characterize this kind
of mutualistic evolution of software artifacts, which occur due to
the software’s internal evolution, as consistency co-evolution.

(ii) Adaptation co-evolution: The external evolution of the
software’s operational environment, such as updated adjacent sys-
tems, more recent APIs version, and new potential users of the
software, triggers the corresponding changes in the software for
the adaptability purposes. We characterize this kind as adaptive
co-evolution. If the software does not co-evolve in response to the
external evolution, then it becomes incompatible with the evolved
environment, and thus, is no longer functional. For instance, API
changes, if not addressed, break the entire chain of the client pro-
grams, which extend the API, in the system.

(iii) Optimization co-evolution: Optimization co-evolution
refers to adaptive changes, primarily occurred in response to the
evolution of software adjacent agents, including the environment,
the users, and other interacting software systems. We characterize
this kind of defensive co-evolution, which are triggered in response
to the external and malicious attacks, as optimization co-evolution.
For instance, in 2004, Microsoft released Service Pack 2 of its XP
operating system that turned on its bundled firewall by default
and included a new Data Execution Prevention (DEP) security fea-
ture. DEP provided protection against buffer overflow attacks, and
some believe that the presence of this feature led hackers to move
more toward file-format exploits against common desktop products,
such as Adobe PDF and Microsoft Office documents. Similarly, after
the Department of Defense (DoD) implemented Common Access
Card (CAC) PKI authentication, considered a cybersecurity ‘game-
changer’, many observed that malicious actors simultaneously in-
creased their use of socially-engineered infection vectors [29].

5 PROPERTIES OF PATTERNS
To carefully predict the patterns of co-evolution code weaknesses
and their patches, specifying the proper properties to be taken into
consideration plays an important role in the accuracy of identifying
the patterns and recommending the next defensive patches. We ac-
quire two types of information so as to further provide significantly
more accurate detection of co-evolution patterns. We formulate
each pattern according to three types of properties: (1) artifacts’
structural evolution, (2) artifacts’ semantic evolution, extracted
with information retrieval techniques.

4

MSR4P&S ’22, November 18, 2022, Singapore, Singapore Samiha Shimmi and Mona Rahimi

(i) Semantic Properties: The impact of the software artifacts’
evolution may propagate to the parts of the system outside of the
area syntactically affected by the change. This can become prob-
lematic, as the impact of a change can extend beyond the syntax
and structure change in the artifacts. There are several research
on semantic-based search in software artifacts [30]. For instance
one previous research showed using semantic relations reduced
the size of the change impact sets by 20-90% [10]. There are sev-
eral existing research, using semantic similarity as a measure to
identify relations between different types of software artifacts [21].
Semantic-based approaches are also widely used for sensitive tasks
in the area of security, such as spam filtering [14], control on sen-
sitive encapsulated data [4], cyber-attack detection [1], and the
evaluation of the human user role in predicting the attacks [11].

The technique which converts code snippets into continuous
vectors is known as code embedding, enabling to further apply
mathematical models on the source code. Code embedding is widely
used for semantic analysis of the source code, therefore preserves
the semantics of the code words. For instance, one research pro-
posed CODEnn which jointly embeds code and descriptions, in
such a way that codes and their descriptions have similar semantic
vectors [9]. The joint embedding helped them to retrieve relevant
code for given descriptions.

(ii) Syntactical Properties: Measuring syntactical similarity
and dissimilarity as a metric is not new in the software engineering
domain and has several applications, such as in refactoring, system
remodularizations and mining features from object-oriented code.
Previous research indicated that structural properties are important
metrics in source code processing [31]. However, the similarity
measures may significantly vary between different artifacts. For
instance, one previous research showed using Abstract Syntax Tree
(AST) diff instead of Unix diff reduced false positives by 29-53% [10].
Several approaches are developed for detecting structural similarity
in the source code of a system. For instance, Tree-based approaches
such as AST are used either independently or along with other
techniques [28]. A neural model, namely code2vec, embeds code
snippets into continuous vectors based on their AST-structure while
giving more “attention” to “more important” paths [3]. In layman’s
term this means that the vectors of code snippets with similar
structure and similar attention-path are placed closer to each other.
The model is originally developed for predicting a likely name for
a given code snippet [3].

Previous research showed a combination of semantic and syn-
tactic properties captures a larger body of details in code changes,
in comparison to using each individual property, providing notably
higher accuracy in detecting the patterns of change [18]. For this
reason, this research aims to document patterns of co-evolution
with respect to both, semantic and syntactic, characteristics of evo-
lution on the attack and defense sides.

6 RELATEDWORKS
Although the co-evolution of several software artifacts is not a
new research domain [18, 24, 25], the concept of attack-defend
co-evolution is a novel idea to our knowledge. Willard [29] ex-
amines the notion of attack-defend co-evolution and helped us to

understand their correlation. As he mentioned, the notion of co-
evolution is basically applied to living organisms and nature-based
adaptations but can be applied to the cyber-security domain as well.
He described the concept of “moving-target defense” in his article.
Whenever the attacker attacks, the defender takes some actions and
in response to those actions, the attacker can take further action,
and here comes the concept of attack-defend co-evolution. Willard
explained the concepts with formal definitions. However, this work
did not do any implementation of the idea.

7 CONCLUSION
In this paper, we drew attention to the patterns of co-evolution
between attack and defense actions in cybersecurity domain. We
discussed our ongoing research, aligning with the objectives of mov-
ing target defense. We aim to leverage the patterns of co-evolution
between attacks and defends in historical data to predict the more
likely attacks in response to a recent defense in a system. To train
a data-driven AI model, we will adopt multimodal neural networks
to mine the publicly available software repositories.

REFERENCES
[1] Ahmed Aleroud, George Karabatis, Prayank Sharma, and Peng He. 2014. Context

and semantics for detection of cyber attacks. International Journal of Information
and Computer Security 7 6, 1 (2014), 63–92.

[2] Paul D Allison and Richard P Waterman. 2002. Fixed–effects negative binomial
regression models. Sociological methodology 32, 1 (2002), 247–265.

[3] Uri Alon, Meital Zilberstein, Omer Levy, and Eran Yahav. 2019. code2vec: Learn-
ing distributed representations of code. ACM on Programming Languages 3, POPL
(2019), 1–29.

[4] Flora Amato, Valentina Casola, Nicola Mazzocca, and Sara Romano. 2011. A
semantic-based document processing framework: a security perspective. In Inter-
national Conference on Complex, Intelligent, and Software Intensive Systems. IEEE,
197–202.

[5] Guru Bhandari, Amara Naseer, and Leon Moonen. 2021. CVEfixes: automated
collection of vulnerabilities and their fixes from open-source software. In Interna-
tional Conference on Predictive Models and Data Analytics in Software Engineering.
30–39.

[6] PoC Consul and Felix Famoye. 1992. Generalized Poisson regression model.
Communications in Statistics-Theory and Methods 21, 1, 89–109.

[7] H Cramer. 1946. Mathematical methods of statistics. Princeton University Press.
[8] Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xiaocheng Feng, Ming Gong,

Linjun Shou, Bing Qin, Ting Liu, Daxin Jiang, et al. 2020. Codebert: A pre-trained
model for programming and natural languages. arXiv preprint arXiv:2002.08155.

[9] Xiaodong Gu, Hongyu Zhang, and Sunghun Kim. 2018. Deep code search. In
International Conference on Software Engineering. IEEE, 933–944.

[10] Quinn Hanam, Ali Mesbah, and Reid Holmes. 2019. Aiding code change under-
standing with semantic change impact analysis. In International Conference on
Software Maintenance and Evolution. IEEE, 202–212.

[11] Ryan Heartfield and George Loukas. 2018. Detecting semantic social engineering
attacks with the weakest link: Implementation and empirical evaluation of a
human-as-a-security-sensor framework. Computers & Security 76, 101–127.

[12] Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long short-termmemory. Neural
computation 9, 8, 1735–1780.

[13] Zachary C Lipton, John Berkowitz, and Charles Elkan. 2015. A critical review of
recurrent neural networks for sequence learning. arXiv preprint arXiv:1506.00019.

[14] Jose R Mendez, Tomas R Cotos-Yanez, and David Ruano-Ordas. 2019. A new
semantic-based feature selection method for spam filtering. Applied Soft Com-
puting 76, 89–104.

[15] Mona Rahimi. 2016. Trace link evolution across multiple software versions in
safety-critical systems. In Proceedings of the 38th International Conference on
Software Engineering, ICSE 2016, Austin, TX, USA, May 14-22, 2016 - Companion
Volume, Laura K. Dillon, Willem Visser, and Laurie A. Williams (Eds.). ACM,
871–874. https://doi.org/10.1145/2889160.2889261

[16] Mona Rahimi and Jane Cleland-Huang. 2015. Patterns of co-evolution between
requirements and source code. In Fifth IEEE International Workshop on Require-
ments Patterns, RePa 2015, Ottawa, ON, Canada, August 25, 2015. IEEE Computer
Society, 25–31. https://doi.org/10.1109/RePa.2015.7407734

[17] Mona Rahimi and Jane Cleland-Huang. 2016. Artifact: Cassandra Source Code,
Feature Descriptions across 27 Versions, with Starting and Ending Version Trace
Matrices. In 2016 IEEE International Conference on Software Maintenance and

5

https://doi.org/10.1145/2889160.2889261
https://doi.org/10.1109/RePa.2015.7407734

Mining Software Repositories for Patternizing Attack-and-Defense Co-Evolution MSR4P&S ’22, November 18, 2022, Singapore, Singapore

Evolution, ICSME 2016, Raleigh, NC, USA, October 2-7, 2016. IEEE Computer Society,
612. https://doi.org/10.1109/ICSME.2016.42

[18] Mona Rahimi and Jane Cleland-Huang. 2018. Evolving software trace links
between requirements and source code. Empir. Softw. Eng. 23, 4 (2018), 2198–2231.
https://doi.org/10.1007/s10664-017-9561-x

[19] Mona Rahimi, William Goss, and Jane Cleland-Huang. 2016. Evolving
Requirements-to-Code Trace Links across Versions of a Software System. In
2016 IEEE International Conference on Software Maintenance and Evolution, IC-
SME 2016, Raleigh, NC, USA, October 2-7, 2016. IEEE Computer Society, 99–109.
https://doi.org/10.1109/ICSME.2016.57

[20] Foyzur Rahman and Premkumar Devanbu. 2013. How, and why, process metrics
are better. In International Conference on Software Engineering. IEEE, 432–441.

[21] Karinne Ramirez-Amaro, Yezhou Yang, and Gordon Cheng. 2019. A survey on
semantic-based methods for the understanding of human movements. Robotics
and Autonomous Systems 119 (2019), 31–50.

[22] Baishakhi Ray, Daryl Posnett, Vladimir Filkov, and Premkumar Devanbu. 2014.
A large scale study of programming languages and code quality in github. In
Proceedings of the 22nd ACM SIGSOFT International Symposium on Foundations of
Software Engineering. 155–165.

[23] Rebecca Russell, Louis Kim, Lei Hamilton, Tomo Lazovich, Jacob Harer, Onur
Ozdemir, Paul Ellingwood, and Marc McConley. 2018. Automated vulnerability
detection in source code using deep representation learning. In international
conference on machine learning and applications. IEEE, 757–762.

[24] Samiha Shimmi and Mona Rahimi. 2022. Leveraging Code-Test Co-evolution
Patterns for Automated Test Case Recommendation. In IEEE/ACM International
Conference on Automation of Software Test. 65–76.

[25] Samiha Shimmi and Mona Rahimi. 2022. Patterns of Code-to-Test Co-evolution
for Automated Test Suite Maintenance. In 2022 IEEE Conference on Software
Testing, Verification and Validation. 116–127.

[26] Ilya Sutskever, Oriol Vinyals, and Quoc V Le. 2014. Sequence to sequence learning
with neural networks. In Advances in neural information processing systems. 3104–
3112.

[27] Junfeng Tian, Wenjing Xing, and Zhen Li. 2020. BVDetector: A program slice-
based binary code vulnerability intelligent detection system. Information and
Software Technology 123 (2020), 106289.

[28] WuWen, Xiaobo Xue, Ya Li, Peng Gu, and Jianfeng Xu. 2019. Code Similarity De-
tection using AST and Textual Information. International Journal of Performability
Engineering 15, 10 (2019), 2683.

[29] GN Willard. 2015. Understanding the co-evolution of cyber defenses and attacks
to achieve enhanced cybersecurity. Journal of Information Warfare 14, 2, 16–30.

[30] Haining Yao and Letha Etzkorn. 2004. Towards a semantic-based approach for
software reusable component classification and retrieval. In Proceedings of the
42nd annual Southeast regional conference. 110–115.

[31] Annie TT Ying, Gail C Murphy, Raymond Ng, and Mark C Chu-Carroll. 2004.
Predicting source code changes by mining change history. Transactions on
Software Engineering 30, 9, 574–586.

[32] Wei Zheng, Manqing Zhang, Hui Tang, Yuanfang Cai, Xiang Chen, Xiaoxue Wu,
and Abubakar Omari Abdallah Semasaba. 2021. Automatically Identifying Bug
Reports with Tactical Vulnerabilities by Deep Feature Learning. In International
Symposium on Software Reliability Engineering. IEEE, 333–344.

[33] Yaqin Zhou and Asankhaya Sharma. 2017. Automated Identification of Security
Issues from Commit Messages and Bug Reports. In Joint Meeting on Foundations
of Software Engineering. Association for Computing Machinery, 914–919.

6

https://doi.org/10.1109/ICSME.2016.42
https://doi.org/10.1007/s10664-017-9561-x
https://doi.org/10.1109/ICSME.2016.57

Assessing Software Privacy using the Privacy Flow-Graph
Feiyang Tang

Norwegian Computing Center
Oslo, Norway
feiyang@nr.no

Bjarte M. Østvold
Norwegian Computing Center

Oslo, Norway
bjarte@nr.no

ABSTRACT
We increasingly rely on digital services and the conveniences they
provide. Processing of personal data is integral to such services
and thus privacy and data protection are a growing concern, and
governments have responded with regulations such as the EU’s
GDPR. Following this, organisations that make software have legal
obligations to document the privacy and data protection of their
software. This work must involve both software developers that
understand the code and the organisation’s data protection officer
or legal department that understands privacy and the requirements
of a Data Protection and Impact Assessment (DPIA).

To help developers and non-technical people such as lawyers
document the privacy and data protection behaviour of software, we
have developed an automatic software analysis technique. This tech-
nique is based on static program analysis to characterise the flow
of privacy-related data. The results of the analysis can be presented
as a graph of privacy flows and operations—that is understandable
also for non-technical people. We argue that our technique facili-
tates collaboration between technical and non-technical people in
documenting the privacy behaviour of the software. We explain
how to use the results produced by our technique to answer a series
of privacy-relevant questions needed for a DPIA. To illustrate our
work, we show both detailed and abstract analysis results from
applying our analysis technique to the secure messaging service
Signal and to the client of the cloud service NextCloud and show
how their privacy flow-graphs inform the writing of a DPIA.

CCS CONCEPTS
• Software and its engineering→ Software testing and debug-
ging; • Security and privacy→ Social network security and
privacy.

KEYWORDS
Program analysis, data protection and privacy, GDPR, software
design documentation

ACM Reference Format:
Feiyang Tang and Bjarte M. Østvold. 2022. Assessing Software Privacy using
the Privacy Flow-Graph. In Proceedings of the 1st International Workshop on
Mining Software Repositories Applications for Privacy and Security (MSR4P&S

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
MSR4P&S ’22, November 18, 2022, Singapore, Singapore
© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9457-4/22/11. . . $15.00
https://doi.org/10.1145/3549035.3561185

’22), November 18, 2022, Singapore, Singapore. ACM, New York, NY, USA,
9 pages. https://doi.org/10.1145/3549035.3561185

1 INTRODUCTION
Privacy has been widely discussed in recent years — with the rise
in public awareness and associated legislative developments, guar-
anteeing privacy while processing large amounts of private user
data has become an important topic. Following recent law imple-
mentations such as the GDPR, we now have a regulated and clear
framework for ensuring privacy compliance, which mandates doc-
umenting software properties through, for example, a Data Privacy
Impact Assessment (DPIA). Such an examination must include all
parts of the software and it requires a grasp of the software as well
as sufficient technical knowledge to analyse the implementation. As
a result, we would anticipate a development team expert who has a
brief grasp of the implementation while also having sophisticated
analysis and tools at their disposal to assist ensure that critical
questions in evaluation frameworks such as DPIA can be answered.

The reality, however, is considerably different. While having a
privacy compliance checking process operating alongside a soft-
ware development life cycle is important, analysis and tools at the
code level with tailored assistance to legal experts are insufficient.
In the meantime, DPIA questions require an understanding of both
technical and legal aspects. This means that performing a successful
DPIA cannot be done exclusively by a non-technical Data Protec-
tion Officer (DPO) who specialises in data protection policy or a
technical professional from the data controller (e.g., a developer in
the service provider organisation) with programming experience.
Simultaneously, it is difficult for developers to keep track of every
single change in terms of private data processing among hundreds
of lines of code.

This raises the following question: how can we help both techni-
cal developers (from or work for data controllers) and non-technical
(DPOs) individuals examine privacy compliance in software? Since
tracking the flow of data originating from users is important for
privacy protection, we must check sensitive user inputs to the soft-
ware and use an explainable abstraction to illustrate the privacy
behaviours in the software, address privacy elements, and provide
assistance in producing a better privacy analysis.

We propose privacy flow-graphs as a means to help both devel-
opers and DPOs, they can adopt our technique to discover privacy-
related behaviours in software. Such graphs produced by our tech-
nique enable documenting private data processing actions, assist
organisations (the data controller) in showing compliance with
their duties and assist the DPO in carrying out its missions. Il-
lustrating the processes may also assist developers to construct
more privacy-compliant software and achieve privacy-by-design
throughout development and deployment.

Our contributions are:

7

https://doi.org/10.1145/3549035.3561185
https://doi.org/10.1145/3549035.3561185

MSR4P&S ’22, November 18, 2022, Singapore, Singapore Feiyang Tang and Bjarte M. Østvold

• The definition of the privacy flow-graph (Section 3.2)
• How to write a DPIA informed by the privacy flow-graph
(Section 4).

• A static program analysis that builds the privacy flow-graphs
for Java programs (Section 5).

We demonstrate the utility of our research by examining privacy-
related trends in two well-known Java applications: Signal and
NextCloud (Section 6).

2 MOTIVATION
Examining data protection compliance is essential for the vast ma-
jority of software released to the market, as well as for every service
update when new user data must be analysed or when the way data
is handled changes. Legal regulations such as the GDPR necessi-
tate that legal experts obtain detailed privacy-related information
processes from software developers. This implementation-specific
information is typically obtained through manual labour by devel-
opers, and may not include all that a legal expert needs.

However, there are developers that are unfamiliar with the ex-
isting software and might have difficulties providing in-depth in-
formation to legal experts.

This circumstance motivated us to design a lightweight, semi-
automated program analysis technique that automatically analyses
how and where personal data is accessed and processed, therefore
providing software developers and DPOs with a great deal of ease.

3 PRELIMINARIES
In this section, we describe the preliminary aspects of our anal-
ysis: the local and global data-flow, the privacy flow-graph, the
source and sink methods, and the handcrafted datasets we created
to support the analysis.

Let 𝑐, 𝑑 denote classes, 𝑛,𝑚 methods, and let notation 𝑐.𝑚 make
explicit that class 𝑐 that declares𝑚. We assume that method names
are unique in a class.

3.1 Local Data-Flow in Methods
We define some notation to refer to results obtainable from the
control flow graph (CFG) of a method. These results concern the
kind of values that may flow between various points either inside
the method body.

Definition 3.1 (Method data-flow point 𝑝). A data-flow point 𝑝
associated with a method 𝑐.𝑚 is one of the following:

start – the start of the method;
invoke 𝑑.𝑛 𝑖 – an invocation of method 𝑑.𝑛;
i_primitive𝑖 – an input primitive;
o_primitive𝑖 – an output primitive;
return𝑖 – a return statement.

Definition 3.2 (Local data-flow 𝐹 ; beginning, end). Let 𝑝, 𝑝 ′ be
data-flow points, let 𝐹 be 𝑝 ↦→ 𝑝 ′ and let 𝑐.𝑚 be a method. We write
𝐹 ⊨CFG(𝑐.𝑚) to means that the control-flow-graph of 𝑐.𝑚 specifies
a local data-flow 𝐹 , that is, that values may flow from 𝑝 to 𝑝 ′. We
refer to 𝑝 as the beginning of 𝐹 , denoted begin(𝐹) and 𝑝 ′ as the end
of 𝐹 , denoted end (𝐹).

An invocation can be both a beginning and an end of a flow,
whereas the start of the method and an input primitive can only be

a beginning, and a return statement and an output primitive can
only be an end.

We are concerned with all data-flows that originate from the
use of an input primitive. We now define some particular types of
flows.

Definition 3.3 (Source flow, 𝐹𝑜). Given method 𝑐.𝑚 where
(i_primitive𝑖 ↦→ return𝑗) ⊨CFG(𝑐.𝑚). This flow is called a
source flow, denoted 𝐹𝑜 .

Definition 3.4 (Sink flow, 𝐹 𝑖). Given method 𝑐.𝑚 where
(start ↦→ o_primitive𝑖) ⊨CFG(𝑐.𝑚). The flow is called a sink
flow, denoted 𝐹 𝑖 .

3.2 Global Data-Flow & the Privacy Flow-Graph
We now consider global data-flow, specifically data-flows between
methods of different classes, those are, all data-flows that start from
the use of an input primitive.

We extend the concept of a data-flow from local flows 𝐹 inside
methods to global flows 𝐺 across methods. A global data-flow is
defined by a series of local data-flows, each corresponding to a
method invocation, and that satisfies certain conditions.

Definition 3.5 (Global data-flow𝐺). A global data-flow 𝐺 is finite
series of two or more local data flows, 𝐹1 · · · 𝐹𝑛 . The notions of
beginning and end extend to𝐺 in an obvious way. Furthermore, any
𝐹𝑘 , 𝐹𝑘+1 above must satisfy the following: Let 𝑐𝑘 .𝑚𝑘 be such that
𝐹𝑘 ⊨CFG(𝑐𝑘 .𝑚𝑘) and 𝑐𝑘+1 .𝑚𝑘+1 such that 𝐹𝑘+1 ⊨CFG(𝑐𝑘+1 .𝑚𝑘+1)
and end (𝐹𝑘) = return𝑖 and begin(𝐹𝑘+1) = invoke 𝑐𝑘 .𝑚𝑘 𝑗 for some
𝑖, 𝑗 .

A global data-flow𝐺 = 𝐹1 . . . 𝐹𝑛 is a privacy flow if 𝐹1 is a source
flow. We are especially interested in global data-flows that involve
data from input primitives ending up in output primitives.

Let 𝑃 be a program with privacy flows 𝐺1, . . . ,𝐺𝑛 . The privacy
flow-graph is a graph where there the nodes are all methods in-
volved in a privacy flow and the edges are pairs of methods involved
in successive flows 𝐹𝑘 , 𝐹𝑘+1 part of some 𝐺 𝑗 .

3.2.1 Java specifics. Here we consider some issues in adapting our
data-flow definitions to Java.

First, we define rich types with the intuition that we are only
interested in flows that involve values of these kinds of types.

Definition 3.6 (Rich type). A rich type is any of following: the
primitive data types string, int, byte, the object types, as well as
arrays of rich types.

Values of rich types are those values that may contain privacy-
related information. In principle, a boolean could also be relevant
to privacy, but we limit our scope to the rich types to simplify our
task. We are concerned with the processing of privacy-related data
and not with the leakage of bits of privacy information stemming
from such processing.

All non-trivial programs refer to either standard libraries or
third-party libraries and thus source flows and sink flows may take
place inside the methods of these libraries. In order to include these
flows without analyzing the libraries, we introduce the concept of
source methods and sink methods where such flows happen, and
we apply a separate library analysis to pre-build a collection of
source and sink methods.

8

Assessing Software Privacy using the Privacy Flow-Graph MSR4P&S ’22, November 18, 2022, Singapore, Singapore

A source method is a method whose invocation results in a source
flow, and we denote it as om. A sink method is a method whose
invocation results in a sink flow, denoted im.

3.2.2 Library analysis. We have manually constructed a dataset
of source and sink methods in the native Java library1 as well as
the most used third-party Java libraries across different categories2.
The third-party libraries were selected from the Maven Repository
list based on their download frequency3. There are 158 Java source
methods and 257 third-party library methods, which are divided
into five groups based on the return data type. Table 1 displays three
Java source method samples and three from third-party libraries.

Similarly, we created a dataset that included 350 sink methods
from the same Java and 365 sink methods from the third-party
libraries we investigated for the source method. Five examples of
sink methods are displayed below in Table 2.

A global privacy data-flow is made up of many nodes that repre-
sent various methods. Different methods imply different types of
data processing; to help demonstrate these processes, we charac-
terise process under four categories.

Definition 3.7 (Process). A process is a local data-flow 𝐹 in a
privacy flow 𝐺 = 𝐹1 . . . 𝐹𝑛 that is not a source flow 𝐹𝑜 or a sink flow
𝐹 𝑖 .

To specify some special kinds of processes, we use the following
separate terms:

• Security process, if a process involves cryptography, data-
base, security, or network packages.

• Authentication process, if authentication is involved.
• Initialisation process, if a process initialises a class.
• Non-privacy process, if it does not belong to either of the
three categories above.

4 ASSESSING DATA PRIVACY
It is challenging for software developers and legal privacy experts
to have a mutual understanding and benefit from each other’s ex-
pertise and insights. To address this, we examine how to leverage
information from data flows in software to answer particular con-
cerns related to GDPR rules. According to Article 4 in GDPR, “the
data controller determines the purposes for which and the means by
which personal data is processed” ; hence, software providers (organ-
isations) are data controllers if the organisation develops its own
software. Otherwise, the software developers provide the imple-
mentation to the data controllers who are responsible for privacy
protection. In this paragraph, we first look at the core GDPR obliga-
tions of the data controller, which serves as the duty of DPOs, and
then discuss how we may help DPOs answer key DPIA questions
(the document created by the approach in this study is referred to
as a DPIA.).

4.1 Obligation of the Data Controller
Article 24 in the GDPR [9] states several obligations of the data
controller which should be monitored by the DPO:
1Based on JDK 8u201
2Jackson, Log4j2, Apache Commons, Guava, HttpClient, JMS, Joda Time, Apache
MINA, Apache Commons Codec and Derby
3Maven Repository: https://mvnrepository.com/

• by default and by design, the data controller should have a
record of processing activities (Article 30);

• to ensure the security of the processing (Article 32);
• to notify personal data breaches to the supervisory authori-
ties (Article 33);

• to communicate personal breaches to the data subject (article
34)

• to conduct DPIA (Article 35);
• to conduct prior consultation with supervisory authorities
(Article 36).

The DPOs’ role is to monitor whether the data controller fulfilled
all of their commitments, which includes performing a DPIA when
required. The writing of a DPIA is a shared duty for data controllers
and DPOs.

As one of the major data protection authorities in Europe, the
Irish Data Protection Commission [8] provides a short explanation
of what DPIA contains:

“A DPIA describes a process designed to identify risks
arising out of the processing of personal data and to
minimise these risks as far and as early as possible.”

Here we picked one of the most often used sample templates for
generating a DPIA from the British Information Commissioner’s
Office (ICO) [20].

Under Section 2: Describe the processing of the template, there are
three questions:

• Describe the nature of the processing: how will you collect,
use, store and delete data? What is the source of the data?
Will you be sharing data with anyone? You might find it
useful to refer to a flow-graph or another way of describing
data flows. What types of processing identified as likely high
risk are involved?

• Describe the scope of the processing: what is the nature of
the data, and does it include special category or criminal
offence data? How much data will you be collecting and
using? How often? How long will you keep it? and more

• Describe the context of the processing: what is the nature of
your relationship with the individuals? How much control
will they have?

Also under Step 5: Identify and assess risks, DPIA requires “Describe
the source of risk and nature of the potential impact on individuals.”

With a list of privacy data-flows listed under different categories,
developers and DPOs could identify the parts of the program that
collect privacy data from users and the relevant risky sinks. As a
result of identifying privacy flows, they can pinpoint exposure risks
and offer solutions to minimise those risks.

4.2 Answering Key DPIA Questions
Based on the previous paragraph, we now define six key questions
relevant to the DPIA. Software development teams andDPOs should
consider how to answer these questions when writing the DPIA.
Each question is followed by an explanation of how our proposed
analysis technique can help answer the questions.

Q1 What is the source & nature of the data?

9

https://mvnrepository.com/

MSR4P&S ’22, November 18, 2022, Singapore, Singapore Feiyang Tang and Bjarte M. Østvold

Table 1: Examples of source methods

Method signature Category
int java.io.DataInputStream.read(byte[]) I/O
java.lang.String java.net.URL.getQuery() Network
java.sql.ResultSet java.sql.Statement.getResultSet() Database
int org.apache.commons.io.input.ProxyInputStream.read(byte[]) I/O
org.apache.http.ssl.SSLContextBuilder org.apache.http.ssl.SSLContextBuilder.loadKeyMaterial() Network
java.sql.ResultSet org.apache.derby.iapi.jdbc.BrokeredStatement.executeQuery(java.lang.String) Database

Table 2: Examples of sink methods

Method signature Category
void java.util.logging.Logger.log(java.util.logging.LogRecord) Log
void java.io.BufferedWriter.write(int) I/O
void javax.servlet.http.HttpServletResponse.sendRedirect(java.lang.String) Network
void com.sun.xml.txw2.output.XMLWriter.comment(char[],int,int) I/O
java.net.HttpURLConnection org.jsoup.helper.HttpConnection(org.jsoup.Connection) Network

A1 We need to know where the data is acquired originally and
through which way. By having privacy source methods de-
tected from the target program, we are able to look for all the
potential locations in which personal data from users might
get captured by the system. Different categories of privacy
source methods might also indicate the type and nature of
the data. For example, a method from java.io.File indi-
cates this method reads from a file in the local file system.

Q2 How is private data processed?
A2 Wewant to identify the parts of the program that involve the

processing of private data. This is a discovery study based on
the flows that stem from privacy source methods. There are
many patterns that might provide details on the processing
of privacy data, for example, data travel through multiple
sources or reach into multiple different sinks.

Q3 Will the data be transformed? If so, how to ensure privacy data
quality?

A3 Data transformation and quality control can be subtle. There
are clues such as the change of data types, certain types
of data manipulation methods or certain APIs that might
get involved in data transformation such as encryption or
database packages.

Q4 Will the data be shared/transferred and if yes, how?
A4 Most of the data transportation happens when the privacy

data flow into a sink method. By pinpointing the location
and type of sink methods, we are able to identify whether
there are private data being shared or transferred out of the
target program.

Q5 Does the data collected include special/highly sensitive personal
data?

A5 The property of privacy data need to be manually identified
or with the help of developers. By adopting pure logic we
can pick up properties that are directly linked with specific
input devices of software.

Q6 How is the data secured?

A6 The security of private data is ensured when there are data
protection mechanisms adopted, for example, the usage of
cryptographic libraries or some encrypted databases. By
locating the occurrence of these methods, we are able to
analyse the data security protection of the target program.

5 IMPLEMENTATION
In the following paragraphs, we explain how our program analysis
technique is implemented. Our implementation is built on Soot [16],
a Java optimisation framework that provides four intermediate
representations for analysing and transforming Java bytecode. Our
technique consists of three parts:

• Transforming program bytecode to intermediate representa-
tion;

• Finding the source and sink methods;
• Building a privacy flow-graph by constructing one privacy
flow for each source method at a time;

• Producing the abstraction extracted from the privacy flow-
graph.

5.1 Finding Source and Sink Methods
Soot helps us transform our target program into a 3-address inter-
mediate representation [23]. By traversing the 𝐶𝐹𝐺 (𝑐.𝑚) of each
method 𝑐.𝑚 in the program (provided in Jimple), the local data-
flow analysis helps us detect the occurrences of source and sink
methods in the pre-set annotation datasets (om and im) defined in
Section 3.2.1. By having a complete list of source and sink methods
in the application as O and I, we now use them to start building
the privacy flow-graph.

5.2 Building the Privacy Flow-Graph
For every class that includes a detected source method, we mark it
as a class-of-interest (COI). For each COI, we first build a complete
call-graph for it.

10

Assessing Software Privacy using the Privacy Flow-Graph MSR4P&S ’22, November 18, 2022, Singapore, Singapore

Definition 5.1 (Class-of-interest). A Class-of-interest (COI) is a
class that contains an invocation to one of the source methods (O).

𝑐 ∈ COI ⇔ ∃𝑜 ∈ 𝑐, 𝑜 ∈ O

Now for each source method 𝑜 ∈ O, we build a global data-flow
𝐺𝑜 = 𝐹𝑜 . . . 𝐹𝑛 for it from the call-graphs of each class that 𝐺𝑜

passes through. The final output is a union of all the global data-
flows originating from source methods. This graph uses 𝐴 → 𝐵 to
represent that method 𝐵 invokes method 𝐴. Each𝐺𝑜 will be output
as a separate dot file consisting of all the nodes (full signature
of methods) and edges (invocations among the methods) which
enables users to easily visualise it with simple tools.

5.3 Abstracting the Privacy Flow-Graph
Privacy flows can be lengthy and comprise a variety of non-sensitive
processes, many of which are from the same class and are unrelated
to privacy protection yet may confound both developers and DPOs.
We want to enable DPOs to get a big picture of the important
processes without getting bogged down in minutiae by creating an
abstraction from the privacy-flow-graphs generated by each source
method. The abstraction is powered by a simple Python script
running automatically on the initial complete privacy flow-graph.
We select several key parts from the complete privacy flow-graph
which are listed below as symbols:

• ▲: the starting source method;
• △: a non-starting source method;
• #: a non-special process;
Multiple processes that belong to the same package will be
grouped into one process symbol in the abstraction.

• ⊗: a security process (cryptography, database, or network);
A security process is detected by the substring detector, we
look for substrings such as ‘encrypt’, ‘db’, ‘send’, ‘connect’
in the method and its package name.

• ▼: the end sink method;
• ▽: a non-ending sink method;
• : the end process;
• ♢: an authentication process;
Similar to a security process, we report an authentication
process when we detect the substring ‘auth’ in the method
or its package name.

• ⊙: initialisation process(es).
The initialisation process has ‘init’ in their names which can
be picked up by our substring detector.

The above key information can be interpreted to help developers
pin down specific issues in code and assist DPOs to have a sketch
of high-level privacy patterns in the program, to also better answer
the relevant questions in DPIA.

An example abstraction output reflecting the code snippet in
Figure ?? is shown below: The example has one obvious source
method read() (line 7) which acts as the starting point of our anal-
ysis. The technique then finds the next invocation to the source
method when class Student gets initialised (line 16). This initial-
isation is triggered later by another initialisation of class Status
(line 24). Following the newly created object Status s, we can
trace the invocations to calculate() (line 28), encode() (line 21),
findResult() (line 31) and finally to a sink print() (line 31) which

is invoked by the Main() method. Source method read() and sink
method print() have their categories labelled as well as the special
process encode().

Along with the abstraction figure, we provide short labels with
the symbols which consist of information such as 1) categories
of starting source method and sink methods; 2) categories of the
special processes (security, authentication, or initialisation); 3) the
class name is displayed when it is an initialisation process (optional).

6 EXPERIMENT
We are looking for apps that accept raw sensitive user data and
entail data transmission, often in messaging and cloud storage
applications. We thus selected the following two applications: Sig-
nal4 and NextCloud5. The non-profit Signal Foundation and Sig-
nal Messenger LLC created Signal, a cross-platform end-to-end
instant messaging service. We intend to study how Signal processes
privacy-related user data by analysing both Signal’s front-end An-
droid application and the Signal Client Service API because of its
expertise in end-to-end encryption. The purpose is to figure out
how data is taken from the user and sent to the server. NextCloud
is a client-server software package for developing and managing
file hosting services. It is free and open-source software that any-
body may install and run on their own private servers. We chose
an implementation of its Client API that assists developers in de-
veloping Java apps with NextCloud integration since it is highly
configurable. Similar to Signal, we intend to determine how the
application handles privacy-sensitive user data.

6.1 Signal
The Signal Service API contains 17,710 lines of code, which might
require developers and DPOs significant time and effort to compre-
hend. With our samples of DPIA answers, DPOs could effortlessly
use our implementation results to create a DPIA.

A total number of 11 privacy flows were detected in Signal Ser-
vice API (9 out of a total 11 are displayed here), the abstraction of
its privacy flow-graph is shown below as Figure 2. We categorise
the 9 source methods found into four 4 different functionalities. In
Signal, we have discovered a similar pattern for all types of data
communication: each raw entry is instantly sent into Signal’s own
cryptography libraries, allowing all user entries to be completely
encrypted before they reach any possible sinks or processes. Signal:
Send Message and Signal: Receive Message in Figure 2 demonstrate
this end-to-end encryption mechanism. As indicated by the dashed
green lines, there are some source methods that accept some values
from local fields which originated from source methods in other
flows. PSO1, for example, gets value from source methods O6 and O9,
which are network-related properties associated with the message
object.

Now, we answer the DPIA questions we listed in Section 4.2
using the flow that originates from O1 (blue flow) in Signal: Send
Message of Figure 2. To analyse privacy compliance, we combine the
abstraction figure (which only comprises shapes and categories of
critical processes) with detailed privacy flow-graphs (which contain

4https://signal.org/en/
5https://nextcloud.com/

11

https://signal.org/en/
https://nextcloud.com/

MSR4P&S ’22, November 18, 2022, Singapore, Singapore Feiyang Tang and Bjarte M. Østvold

read()
Category: I/O

Student(init)

Status(init)

calculate()

x

encode()
Category: Security/Crypto

findResult()

print()
Category: I/O

Main()

Figure 1: Example of a privacy data-flow generated for a source code fragment and its abstraction

every node in the flow-graph as well as their complete signature),
shown as in Table 3.

Q1 What is the source & nature of the data?
A1 Android applications take text input from a TE object which

is a UI fragment providing a text field for users. The message
field contains the raw message users want to send out.

Q2 How is private data processed?
A2 The abstraction tells us that there exist multiple processes

when the text message is being sent out. There are two non-
privacy processes from packages org.signal.securesms.jobs
and org.signalservice.api.signalservicemessagesender.
The package names indicate the types of processing behind
the processes. There are also highly sensitive privacy pro-
cesses such as the MessageContentProcessor() which is a
non-starting source method that takes privacy data from a
local field, in this case, it combines multiple privacy data in-
cluding the text message. org.signalservice.api.crypto
shows a typical encryption process, this also demonstrates
the end-to-end encryption in Signal.

Q3 Will the data be transformed? If so, how to ensure privacy data
quality?

A3 We notice that the data type gets immediately changed after
being read into the device as raw strings. Both non-privacy
and privacy processes transform data in order to achieve

their functionality. However, encrypted messages stay en-
crypted before they get sent out, which ensures the content
will not get manipulated by external parties.

Q4 Will the data be shared/transferred and if yes, how?
A4 The final ending sink method sendMessage() sends en-

crypted message objects out to the server from the client.
Q5 Does the data collected include special/highly sensitive personal

data?
A5 The properties of the message object are sensitive. Not only

the text message body itself, its attributes such as the details
of senders but receivers and timestamps also remain sensitive
during the entire process.

Q6 How is the data secured?
A6 Data security is guaranteed here by end-to-end encryption.

All the privacy data related to the message get encrypted
together as an EncryptedMessage object. This encrypted
object cannot be decrypted by the server, which remains
unreadable until it reaches the destination client.

Our discovery also supports what Signal claims in its privacy
policy. By supplying the aforesaid information to both developers
andDPOs, they are able to receive adequate information for creating
DPIA and examining the privacy protection status in Signal without
having to read the original code.

12

Assessing Software Privacy using the Privacy Flow-Graph MSR4P&S ’22, November 18, 2022, Singapore, Singapore

NextCloud: Upload Files

Signal: Build Connection

Signal: Verification

Signal: Receive Message

Signal: Send Message

O1

Category: I/O
t1

t2 t3 x

Category: Network

I1

Category: Network

O2

Category: Network

O3

Category: I/O

O7

Category: Network

I3

Category: Network

O8

Category: Network

O9

Category: Network

PSO4

O5

O6

Category: I/O

PSO3O7

O8

O4

Category: I/O

x

Category: Security/Crypto

PSO2

I2

Category: NetworkO5

Category: I/O

x

Category: Security/Crypto

O6

O1

Category: I/O

PSO1 x

Category: Security/Crypto

x

Category: Security/Crypto

I1

Category: Network

O2

Category: I/O

O3

Category: I/O

O9

O6

Figure 2: Sample abstract privacy flows for Signal and NextCloud

13

MSR4P&S ’22, November 18, 2022, Singapore, Singapore Feiyang Tang and Bjarte M. Østvold

Table 3: Complete privacy data-flow with abstraction symbols for sending a text message in Signal

Abstraction Complete privacy data-flow
▲ android.widget.EditText getText()
org.thoughtcrime.securesms.jobs.PushTextSendJob deliver(message)
△ org.thoughtcrime.securesms.messages.MessageContentProcessor handleMessage(content, timestamp, ...)
⊗ org.whispersystems.signalservice.api.crypto.SignalServiceCipher encrypt(destination, message, ...)

#
org.whispersystems.signalservice.api.SignalServiceMessageSender getEncryptedMessage(content, recipient, timestamp, ...)
org.whispersystems.signalservice.api.SignalServiceMessageSender getEncryptedMessages(content, recipient, timestamp, ...)
org.whispersystems.signalservice.api.SignalServiceMessageSender createMessageContent(message)

▼ org.whispersystems.signalservice.api.SignalServiceMessageSender sendMessage(message, recipient, ...)

6.2 NextCloud
Since NextCloud recently implemented end-to-end encryption in
their products, this feature only offers on the level of ‘end-to-end
encrypted folders’. Hence in our analysis, we only apply the tech-
nique to the client API which is applied to the traditional version
that relies on TLS communication for safely transferring files.

From a total of 8,923 lines of code, we are able to extract key
information from the NextCloud Client API using a simplified pri-
vacy flow-graph along with the complete flow-graphs with full
signatures, as we did with Signal. We evaluate the DPIA questions
to help DPOs in getting information from a legal standpoint, using
the abstraction graph derived from our technique in Figure 2.

Q1 What is the source & nature of the data?
A1 NextCloud Client API allows a client to upload a new file

via uploadNewFile(). The files can be of various types but
shall be categorised as the user’s personal data. There is also
one network source, which links with data that can be used
to identify users on the Internet.

Q2 How is private data processed?
A2 The file is transmitted from the device to the network; this

is how a file is sent from the client to the server.
Q3 Will the data be transformed? If so, how to ensure privacy data

quality?
A3 Not only the file acquired from the user is transferred to

the server, but also network data and configuration settings.
These various user data are processed and loaded into multi-
ple fields of various class objects (reflect on the two initiali-
sation processes). During these procedures, data types must
be transformed in order to be organised for transmission as
a type that the server accepts.

Q4 Will the data be shared/transferred and if yes, how?
A4 The final node is a network sink, which indicates that the

user’s data has been transmitted into the network and shared
with the server.

Q5 Does the data collected include special/highly sensitive personal
data?

A5 In this example, the data comprises user files, settings, and
network details. User files are highly sensitive in terms of
privacy.

Q6 How is the data secured?
A6 The network process here depicts a TLS connection, which

is a cryptographic technology meant to ensure network com-
munications security.

With the information provided above, we provide both developers
and DPOs a better understanding of how the file upload process
works in the NextCloud Client API, as well as what and where are
the important aspects of privacy protection for NextCloud.

Privacy flow-graphs illustrate trends in terms of privacy-related
data processing, including both benign and bad practices. It can
assist not just DPOs and developers in responding to DPIA ques-
tions and addressing important processing, but also in identifying
potentially questionable practices and ensuring good practices on
privacy-related data.

7 RELATEDWORK
Using static analysis for security bug detection in software [4, 6, 10]
is a source of inspiration for our work. In our work, we used hand-
crafted datasets of source and sink methods for Java and popular
third-party libraries as the start point for our analysis. The idea
of using a pre-built set as a basis of static analysis is similar to
SUSI [2], IccTA [17], MudFlow [3] and AndroidLeak [11] in terms
of privacy protection for Android applications. Most current work,
including the above, is specific to Android sinks and sources and
often uses name features as the basis of their analysis, whereas we
focus on Java in general without adopting heuristics. Regarding the
GDPR, we demonstrate the utility of employing privacy flow-graphs
to ease the DPIA process, which saves manual labour and assists
in identifying possible sensitive processes that may be missed by
human eyes.

Overall, there is an increasing interest in assuring privacy protec-
tion compliance prior to or throughout the software development
lifecycle [22]. Privacy-by-design (PbD) has sparked research into
methodologies and models for preserving software privacy before
implementation begins, as well as forecasting or managing devel-
oper privacy compliance throughout implementation [1, 12, 14].
Many of these approaches may also be employed on a regular basis
during the development cycle and while updating software. In the
era of GDPR in Europe, there is also prior research [5, 13, 15] that
aims to provide personalised solutions for DPIA in a variety of
applications. According to a survey conducted by Dias Canedo et
al. [7], technical staff frequently lack legal knowledge regarding
privacy protection. Many existing works [18, 19, 21] propose mod-
els that limit on a conceptual level, that are not tangible for both
technical and non-technical people to apply to implementation, mo-
tivating us to propose an automatic technique to analyse privacy
compliance in software.

14

Assessing Software Privacy using the Privacy Flow-Graph MSR4P&S ’22, November 18, 2022, Singapore, Singapore

8 CONCLUSION
In terms of privacy protection, there always exists a barrier between
developers and DPOs. DPOs need to generate a successful DPIA
to document the privacy protection behaviour of software, this
requires the developer’s comprehensive knowledge of code details.
Our work provides a technique for detecting privacy source and
sink methods in software bytecode, generating privacy flow-graphs
from the discovered sources, and supporting DPOs in writing a
DPIA utilising privacy flow-graphs and associated abstractions.

9 LIMITATION AND FUTUREWORK
Our present method requires predetermined source and sink lists.
Given that modern applications typically contain hundreds of direct
and indirect dependencies, we may miss a significant number of
privacy-related sources and sinks. Therefore, we rely on the knowl-
edge of technical specialists to create a more precise list of sources
and sinks. Moreover, despite the fact that our complete privacy flow-
graphs and their abstractions can express key privacy-sensitive be-
haviours such as data acquisition, encryption, and transportation,
they are unable to provide complete information regarding which
type of data manipulation was involved in terms of privacy protec-
tion; therefore, developers may be required to provide additional
explanation for DPOs.

Future work includes a more detailed local flow analysis for
each local data-flow in a privacy global data-flow, such as track-
ing how values from privacy-related data are modified in the local
method and flagging sensitive manipulations such as value accu-
mulation and separation. In the meantime, it is feasible to extract
information from the manifest file on which third-party libraries
are imported by the software in order to assist in the construction
of a more adaptable list of sources and sinks. This procedure might
be automated by including these third-party libraries (which are
usually downloadable as JAR files) as a part of the input of the
analysis. Additionally, since dynamically-typed languages such as
JavaScript are used in many different types of modern systems, it
would be advantageous to build a source code-based analyser based
on tools such as Semgrep 6, which as a starting point for extending
our results to web applications.

ACKNOWLEDGMENTS
We appreciate the legal insight that Jan Czarnocki and Lydia Belkadi
have given. This work is part of the Privacy Matters (PriMa) project.
The PriMa project has received funding from European Union’s
Horizon 2020 research and innovation program under the Marie
Skłodowska-Curie grant agreement No. 860315.

REFERENCES
[1] Thibaud Antignac and Daniel Le Métayer. 2014. Privacy by design: From tech-

nologies to architectures. In Annual privacy forum. Springer, Berlin, Heidelberg,
1–17.

[2] Steven Arzt, Siegfried Rasthofer, and Eric Bodden. 2013. SuSi: A Tool for the Fully
Automated Classification and Categorization of Android Sources and Sinks.

[3] Vitalii Avdiienko, Konstantin Kuznetsov, Alessandra Gorla, Andreas Zeller, Steven
Arzt, Siegfried Rasthofer, and Eric Bodden. 2015. Mining Apps for Abnormal
Usage of Sensitive Data. In 2015 IEEE/ACM 37th IEEE International Conference on
Software Engineering, Vol. 1. IEEE, Italy, 426–436. https://doi.org/10.1109/ICSE.
2015.61

6https://semgrep.dev/

[4] Nathaniel Ayewah, William Pugh, David Hovemeyer, J David Morgenthaler, and
John Penix. 2008. Using static analysis to find bugs. IEEE software 25, 5 (2008),
22–29.

[5] Shakila Bu-Pasha. 2020. The controller’s role in determining ‘high risk’ and data
protection impact assessment (DPIA) in developing digital smart city. Information
& Communications Technology Law 29, 3 (2020), 391–402.

[6] Brian Chess and Gary McGraw. 2004. Static analysis for security. IEEE security &
privacy 2, 6 (2004), 76–79.

[7] Edna Dias Canedo, Angelica Toffano Seidel Calazans, Eloisa Toffano Seidel Mas-
son, Pedro Henrique Teixeira Costa, and Fernanda Lima. 2020. Perceptions of
ICT practitioners regarding software privacy. Entropy 22, 4 (2020), 429.

[8] Data Protection Commission (DPC). 2022. Data Protection Impact Assess-
ments. DPC. Retrieved July 6, 2022 from https://www.dataprotection.ie/en/
organisations/know-your-obligations/data-protection-impact-assessments

[9] European Commission. 2016. Regulation (EU) 2016/679 of the European Parlia-
ment and of the Council of 27 April 2016 on the protection of natural persons
with regard to the processing of personal data and on the free movement of
such data, and repealing Directive 95/46/EC (General Data Protection Regulation)
(Text with EEA relevance). https://eur-lex.europa.eu/eli/reg/2016/679/oj

[10] David Evans and David Larochelle. 2002. Improving security using extensible
lightweight static analysis. IEEE software 19, 1 (2002), 42–51.

[11] Clint Gibler, Jonathan Crussell, Jeremy Erickson, and Hao Chen. 2012. Androi-
dleaks: Automatically detecting potential privacy leaks in android applications
on a large scale. In International Conference on Trust and Trustworthy Computing.
Springer, Springer Berlin Heidelberg, Berlin, Heidelberg, 291–307.

[12] Irit Hadar, Tomer Hasson, Oshrat Ayalon, Eran Toch, Michael Birnhack, Sofia
Sherman, and Arod Balissa. 2018. Privacy by designers: software developers’
privacy mindset. Empirical Software Engineering 23, 1 (2018), 259–289.

[13] Jane Henriksen-Bulmer, Shamal Faily, and Sheridan Jeary. 2020. DPIA in Context:
Applying DPIA to Assess Privacy Risks of Cyber Physical Systems. Future Internet
12, 5 (2020), 93.

[14] Jaap-Henk Hoepman. 2014. Privacy Design Strategies. In ICT Systems Security
and Privacy Protection, Nora Cuppens-Boulahia, Frédéric Cuppens, Sushil Jajodia,
Anas Abou El Kalam, and Thierry Sans (Eds.). Springer Berlin Heidelberg, Berlin,
Heidelberg, 446–459.

[15] Martin Horák, Václav Stupka, and Martin Husák. 2019. GDPR Compliance in
Cybersecurity Software: A Case Study of DPIA in Information Sharing Platform.
In Proceedings of the 14th International Conference on Availability, Reliability
and Security (Canterbury, CA, United Kingdom) (ARES ’19). Association for
Computing Machinery, New York, NY, USA, Article 36, 8 pages. https://doi.org/
10.1145/3339252.3340516

[16] Patrick Lam, Eric Bodden, Ondrej Lhoták, and Laurie Hendren. 2011. The Soot
framework for Java program analysis: a retrospective. In Cetus Users and Compiler
Infastructure Workshop (CETUS 2011), Vol. 15. IEEE, Purdue University.

[17] Li Li, Alexandre Bartel, Tegawendé F. Bissyandé, Jacques Klein, Yves Le Traon,
Steven Arzt, Siegfried Rasthofer, Eric Bodden, Damien Octeau, and Patrick Mc-
Daniel. 2015. IccTA: Detecting Inter-Component Privacy Leaks in Android Apps.
In 2015 IEEE/ACM 37th IEEE International Conference on Software Engineering,
Vol. 1. IEEE, Italy, 280–291. https://doi.org/10.1109/ICSE.2015.48

[18] Yod-Samuel Martin and Antonio Kung. 2018. Methods and Tools for GDPR
Compliance Through Privacy and Data Protection Engineering. In 2018 IEEE Eu-
ropean Symposium on Security and Privacy Workshops (EuroS&PW). IEEE, London,
108–111. https://doi.org/10.1109/EuroSPW.2018.00021

[19] Aaron K Massey, Paul N Otto, Lauren J Hayward, and Annie I Antón. 2010.
Evaluating existing security and privacy requirements for legal compliance.
Requirements engineering 15, 1 (2010), 119–137.

[20] Information Commissioner’s Office. 2018. Data Protection Impact Assessments
(DPIAs). https://ico.org.uk/for-organisations/guide-to-data-protection/guide-
to-the-general-data-protection-regulation-gdpr/data-protection-impact-
assessments-dpias/. (Accessed on 03/02/2022).

[21] Luca Piras, Mohammed Ghazi Al-Obeidallah, Andrea Praitano, Aggeliki Tsohou,
Haralambos Mouratidis, Beatriz Gallego-Nicasio Crespo, Jean Baptiste Bernard,
Marco Fiorani, Emmanouil Magkos, Andres Castillo Sanz, et al. 2019. DEFeND
architecture: a privacy by design platform for GDPR compliance. In International
Conference on Trust and Privacy in Digital Business. Springer, Springer, Bratislava,
Slovakia, 78–93.

[22] Ira S Rubinstein. 2011. Regulating privacy by design. Berkeley Tech. LJ 26 (2011),
1409.

[23] Raja Vallée-Rai and Laurie J. Hendren. 1998. Jimple: Simplifying Java Bytecode
for Analyses and Transformations.

15

https://doi.org/10.1109/ICSE.2015.61
https://doi.org/10.1109/ICSE.2015.61
https://semgrep.dev/
https://www.dataprotection.ie/en/organisations/know-your-obligations/data-protection-impact-assessments
https://www.dataprotection.ie/en/organisations/know-your-obligations/data-protection-impact-assessments
https://eur-lex.europa.eu/eli/reg/2016/679/oj
https://doi.org/10.1145/3339252.3340516
https://doi.org/10.1145/3339252.3340516
https://doi.org/10.1109/ICSE.2015.48
https://doi.org/10.1109/EuroSPW.2018.00021
https://ico.org.uk/for-organisations/guide-to-data-protection/guide-to-the-general-data-protection-regulation-gdpr/data-protection-impact-assessments-dpias/
https://ico.org.uk/for-organisations/guide-to-data-protection/guide-to-the-general-data-protection-regulation-gdpr/data-protection-impact-assessments-dpias/
https://ico.org.uk/for-organisations/guide-to-data-protection/guide-to-the-general-data-protection-regulation-gdpr/data-protection-impact-assessments-dpias/

An Exploratory Study on the Relationship of Smells and Design
Issues with Software Vulnerabilities

Sahrima Jannat Oishwee
sao107@usask.ca

University of Saskatchewan
Saskatoon, Canada

Zadia Codabux
zcodabux@cs.usask.ca

University of Saskatchewan
Saskatoon, Canada

Natalia Stakhanova
natalia@cs.usask.ca

University of Saskatchewan
Saskatoon, Canada

ABSTRACT
Software vulnerabilities are one of the leading causes of the
loss of confidential data resulting in financial damages in the
industry. As a result, software companies strive to discover potential
vulnerabilities before the software is deployed. While traditionally,
software metrics have been widely used to uncover vulnerabilities,
more recent studies have been looking at code smells to detect
vulnerabilities. This preliminary study explores the relationship
between smells, design issues, and software vulnerabilities. As
smells and design issues are indicators of potential problems in
the software, establishing a relationship with vulnerabilities can
be helpful for vulnerability prediction. In this study, we analyzed
561 versions of nine open-source software by exploring the smells
and design issues in the vulnerable and non-vulnerable classes.
We found that some smells and design issues have a statistically
significant relationship with the vulnerable classes. However, after a
manual analysis of the code segments containing the vulnerabilities,
we found no indication that smells or design issues induce the
vulnerabilities. In fact, they were still present in those code
segments even after the vulnerabilities were resolved.

CCS CONCEPTS
• Security and privacy→ Software and application security.

KEYWORDS
Code Smells, Design Issues, Software Vulnerabilities, Mining
Software Repositories, Software Security

ACM Reference Format:
Sahrima Jannat Oishwee, Zadia Codabux, and Natalia Stakhanova. 2022. An
Exploratory Study on the Relationship of Smells and Design Issues with
Software Vulnerabilities. In Proceedings of the 1st International Workshop on
Mining Software Repositories Applications for Privacy and Security (MSR4P&S
’22), November 18, 2022, Singapore, Singapore. ACM, New York, NY, USA,
5 pages. https://doi.org/10.1145/3549035.3561182

1 INTRODUCTION
No software today can be considered secure. Any weakness in
the software design, implementation, or configuration that could

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
MSR4P&S ’22, November 18, 2022, Singapore, Singapore
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9457-4/22/11. . . $15.00
https://doi.org/10.1145/3549035.3561182

be exploited to cause harm is generally considered a software
vulnerability. Alongside traditional approaches, for instance, using
software metrics (e.g., code complexity [34], code churn [25], code
cohesion and coupling [5]) that focus on vulnerability detection,
prediction have also gained momentum in research [14, 19, 33].

Code smells are symptoms that may indicate potential issues
in source code [13]. Design issues are weaknesses that violate
fundamental design principles and negatively impact software
quality [31]. Code smells and design issues are related to structural
defects in software [6, 7]. Design issues include errors that can
weaken a system disastrously, and simple coding mistakes or
design issues can lead to exploitable vulnerabilities [3, 21]. Since
both can be potentially exploited by attackers, understanding
their relationship with vulnerabilities can be helpful in early
vulnerability prediction. At a high level, vulnerabilities are classified
as defects [24]. Recently, the impact of smells on vulnerabilities
was explored [9, 30]. As these studies have considered only smells,
we go a step further and investigate the relationship between
smells and design issues with vulnerabilities.

We investigated vulnerabilities and the security reports for 561
versions of nine Open Source Projects (OSPs). We extracted nine
code smells, four architectural smells, and twelve design issues. We
performed an in-depth manual analysis using the vulnerabilities’
descriptions and the fix-commits of the vulnerabilities to
understand each vulnerability’s cause and how they were related
to the smells and design issues in the associated code segments.

Contributions: We analyzed different types of (code and
architecture) smells and design issues to investigate their
relationship with software vulnerabilities. This information
provides guidance to software practitioners helping them prioritize
and manage these smells and design issues for secure software
development. We also provide a replication package1 consisting
of the dataset, Python code for the statistical analyses, and
descriptions of the studied smells and design issues.

2 RELATEDWORK
Elkhail et al. [9] explored the relationship between code smells
and vulnerabilities and found that some smells have a weak
relationship with vulnerabilities. Sultana et al. [30] investigated
the relationship between code and architectural smells with
softwareweaknesses. They concluded that while certain code smells
have a statistically significant relationship with vulnerabilities,
architectural smells do not. Gupta et al. [17] measured pair-wise
co-efficient correlation to investigate the relationship between code
smells and vulnerabilities. They reported that some pairs have a
coefficient above 0.93, indicating a significant correlation. Shin et

1https://doi.org/10.5281/zenodo.7020589

16

https://doi.org/10.1145/3549035.3561182
https://doi.org/10.1145/3549035.3561182

MSR4P&S ’22, November 18, 2022, Singapore, Singapore S. J. Oishwee, Z. Codabux, N. Stakhanova

al. [28] built a vulnerability predictionmodel using complexity, code
churn, and developer’s activity metrics and found that the model
has 25% of false positive results. Gong et al. [15] built a model to
predict security risk for android applications using code smells and
Java static metrics. They concluded that some of the code smells
influence security prediction. Feng et al. [10] used architectural
design issues to indicate potential sources of security issues.

Most existing studies focus on code smells for vulnerability
prediction or to explore the relationship with vulnerabilities. In
our study, in addition to smells, we investigated whether common
design issues are related to vulnerabilities. We also performed
a manual analysis on the code segment of the fix-commits to
understand how the vulnerabilities were fixed and whether they
were related to the smells and design issues.

3 METHODOLOGY
3.1 Research Questions
This study investigates the relationship between (code and
architectural) smells and design issues with software vulnerabilities.
To achieve our goal, we pose two Research Questions (RQs):

RQ1:What is the relationship between smells and software
vulnerabilities?

We investigated whether there is a relationship between
classes with and without smells and vulnerabilities. Based on
previous studies, not all smells are related to vulnerabilities [9,
30]. Therefore, understanding which smells have a statistically
significant relationship with vulnerabilities is important for
vulnerability prediction. Development teams already extracting
smells as a part of their quality assurance process can use our
findings to pinpoint the specific smells that are more prone to
vulnerabilities, and therefore, teams can focus more effort on the
code containing these smells during code review or software testing.
Thus, we formulate the following hypotheses:
Null Hypothesis (𝐻01): The smells are not associated with
vulnerabilities.
Alternative Hypothesis (𝐻𝐴1): The smells are more likely to be
associated with vulnerabilities.

RQ2: What is the relationship between design issues and
software vulnerabilities?

Next, we investigated whether classes with design issues are
more likely to be vulnerable than those without. Identifying which
design issues have a statistically significant relationship with
vulnerabilities can help practitioners understand which ones should
be prioritized and resolved during secure software implementation.
Thus, we formulate the following hypotheses:
Null Hypothesis (𝐻02): The design issues are not associated with
vulnerabilities.
Alternative Hypothesis (𝐻𝐴2): The design issues are more likely
to be associated with vulnerabilities.

3.2 Data Extraction and Processing
We studied nine OSPs from the Apache foundation, namely Batik,
Camel, Kafka, Oozie, PDFBox, POI, Solr, Tomcat, and Wicket. These
projects are of different sizes and diverse in functionalities. The
project statistics are displayed in Table 1.

The study design including the data extraction, processing, and

Table 1: Project Statistics

Project #Versions
#Classes
(Latest
Version)

#Vulner-
abilities

#Vulnerable
Classes

Batik 18 2,231 6 4
Camel 27 20,353 6 11
Kafka 30 5,649 6 10
Oozie 12 1,400 2 18
PDFBox 37 1,444 8 18
POI 25 3,520 3 20
Solr 96 12,751 27 58
Tomcat 245 3,861 59 94
Wicket 71 3,760 9 2
Total 561 54,969 126 235

analysis (steps 1 - 8) is depicted in Figure 1. In step 1 , we
extracted the reported vulnerabilities and vulnerability reports
(containing information such as Common Vulnerabilities and
Exposures (CVE)-IDs, vulnerable and fixed versions, and GitHub
commit (called ‘fix-commit’ in the paper)) from Tomcat’s security
pages2 and Snyk pages3 for the other projects, from November
2021 to May 2022. Next, we filtered out duplicate vulnerabilities
using the unique CVE-IDs, resulting in 126 unique vulnerabilities
in step 2 . Fix-commit contains the vulnerable classes and the
changes (deletion, addition, and modification) in the code segment
of those classes to address the vulnerability. In step 3 , we extracted
235 vulnerable classes using the fix-commit information from
1 . Then, in step 4 , from the vulnerability reports in 1 , we
extracted the vulnerable and fixed versions of each vulnerability.
For example, from the Apache Tomcat security page, we found
that CVE-2021-30639 affected Tomcat versions 10.0.3 to 10.0.4 and
was fixed in version 10.0.5. Therefore, we extracted these three
versions for CVE-2021-30639. We followed this process for the 126
vulnerabilities and extracted their vulnerable and fixed versions.
Finally, we filtered out the duplicate versions for the nine systems
and kept the unique ones, resulting in a total of 561 vulnerable and
fixed versions. Note that the vulnerable version for one vulnerability
can be the fixed version for another and vice versa. We mined
GitHub to extract the source code of the 561 versions in step
5 . Next, in step 6 , using the CVE-ID of each vulnerability, we
extracted the NVD4 descriptions, which contained information
about the vulnerability’s cause, effect, and severity. In step 7 , we
analyzed the source code and extracted nine code smells (God Class,
Lazy Class, Complex Class, Large Class, Refused Bequest, Data Class,
Brain class, Feature Envy, and Long Method) and four architectural
smells (Hub Like Dependency, Class Cyclic Dependency, Unhealthy
Inheritance Hierarchy, and Package Cyclic Dependency) using the
code smell tool, GetSmells [30]. To avoid the threats to validity
associated with using one tool (GetSmells), we also used PMD5

to extract the most common smells (God Class, Data Class, Large
Class, and Long Method). We also extracted 12 common design
issues (Cognitive Complexity, Cyclometric Complexity, Too Many

2https://tomcat.apache.org/security-10.html
3https://snyk.io/
4https://nvd.nist.gov/
5https://pmd.github.io/pmd-6.46.0/

17

An Exploratory Study on the Relationship of Smells and Design Issues with Software Vulnerabilities MSR4P&S ’22, November 18, 2022, Singapore, Singapore

Figure 1: Study Design (Data Extraction, Processing, and
Analysis)

Methods, Collapsible If Statements, Simplify Conditional, Abstract
Class Without Any Method, Switch Density, Avoid Deeply Nested If
Statement, Avoid Throwing Raw Exception, Too Many Fields, Excessive
Parameter List, and Use Object For API) using PMD. In step 8 ,
we analyzed the extracted data manually and using statistical
techniques.

3.3 Data Analysis
To address RQ1, we first performed Fisher’s exact test to investigate
whether classes with more smells are more prone to software
vulnerabilities than others. Fisher’s exact test is the same as the
Chi-Square (𝜒2) test but used when values are less than five in
a 2x2 table. Next, for those values greater than or equal to five,
we performed the 𝜒2 test to identify which smells are more prone
to software vulnerabilities. To perform these statistical tests, we
have two categories, vulnerable (235) and non-vulnerable (54,734)
classes. For Fisher’s exact test, we calculated the frequency of
the smells for each project in these two categories. For the 𝜒2

test, we calculated the frequency of each smell separately for each
version of project. Then, we calculated the p-value. For hypothesis
testing, we considered the threshold p-value to be 0.05, whichmeans
that a p-value ≤ 0.05 indicates strong evidence against the null
hypothesis. Then, we calculated the Effect Size (ES) of Fisher’s exact
test using Odds Ratio (OR) [11] and Cramer’s V6 for the 𝜒2 test. The
thresholds for OR are OR ≤ 1 indicating a low magnitude and OR >

1 indicating a high magnitude. The thresholds for Cramer’s V are
Cramer’s V ≤ 0.2 indicating low magnitude, 0.2 < Cramer’s V ≤ 0.6
indicating moderate magnitude, and Cramer’s V > 0.6 indicating
high magnitude. We followed the same process as RQ1 for the
design issues to address RQ2.

Next, we manually investigated each vulnerability. First, using
the NVD description, we explored the cause and impact of the
vulnerability. Then, we checked the smells and design issues in
the vulnerable and fixed versions of each vulnerable class. This
helped us to determine whether specific smells or design issues
were present in the vulnerable classes but not in the fixed ones.
6https://ibm.co/3RNWQhO

Table 2: Fisher’s Test Results

Project Smells
(p-values)

Smells’
Odds
Ratio
(OR)

Design
Issues

(p-values)

Design
Issues’
Odds
Ratio
(OR)

Batik <0.001 0.40 0.00 0.02
Camel <0.001 0.51 <0.001 0.06
Kafka <0.001 0.65 <0.001 0.06
Oozie <0.001 0.55 0.00 0.03
PDFBox 0.009 1.01 <0.001 0.09
POI 0.865 0.57 0.00 0.03
Solr <0.001 0.40 0.921 0.02
Tomcat <0.001 0.53 0.00 0.99
Wicket <0.001 0.47 0.00 0.02

Lastly, we looked into the code segment of the fix-commit for each
vulnerability to understand how the vulnerabilities were fixed and
related to the associated code segments’ smells and design issues.
From the 126 fix-commits (equivalent to the number of extracted
vulnerabilities), we inspected the 235 vulnerable classes to identify
whether the modification of the code resolved the vulnerability and
whether any specific smells or design issues from the vulnerable
classes were resolved in the fixed version. For example, Kafka had a
timing attack vulnerability (CVE-2021-38153)7. Based on the NVD
description, Kafka has some components that use ‘Arrays.equals’ to
validate a password or key. This ‘Arrays.equals’ API is vulnerable
to timing attacks that can result in successful brute force attacks.
From the fix-commit8, ‘Array.equals’ was replaced by a new API
‘Utils.isEqualConstantTime’, and four classes were modified. These
four classes contained Complex class, Large class, Data Class, Feature
Envy, and Long Method in the vulnerable versions, but none of them
were resolved in the fixed version.

4 RESULTS
RQ1: Smells and Vulnerabilities From Table 2, the emboldened
p-values are < 0.05 (therefore, rejecting 𝐻01) except for POI (p =
0.865). This indicates that for the other eight systems, the smellier
classes are more likely to be vulnerable. However, though the
p-value is significant, the OR for the smells is very low, indicating a
weak result. Since Fisher’s exact test is based on the combined
smells of the different versions of the projects, we calculated
the 𝜒2 for each smell separately for the different versions. The
code smells God Class, Lazy Class, Complex Class, Large Class,
Refused Bequest, Data Class, Feature Envy, and Long Method and
architectural smells Hub Like Dependency, Class Cyclic Dependency,
and Unhealthy Inheritance Hierarchy have p-values ≤ 0.05 (therefore,
rejecting 𝐻01) and high Cramer’s V (Cramer’s V > 0.6). This
indicates that the smells mentioned above have a statistically
significant relationship with vulnerabilities. The outputs from PMD
confirmed the results for God Class, Data Class, Large Class, and
Long Method. From the manual analysis, we found that despite
the vulnerability-inducing code being modified, the smells were
still present after the vulnerabilities were fixed. Therefore, there is

7https://nvd.nist.gov/vuln/detail/CVE-2021-38153
8https://bit.ly/3v8wIop

18

MSR4P&S ’22, November 18, 2022, Singapore, Singapore S. J. Oishwee, Z. Codabux, N. Stakhanova

no direct indication that smells are inducing vulnerabilities or that
smell-ridden code is more prone to vulnerabilities.

RQ2: Design Issues and Vulnerabilities From Table 2, the
emboldened p-values indicate projects with a p-value < 0.05
(therefore, rejecting 𝐻02). Only Solr has a p-value of 0.92. However,
the OR is of low magnitude, indicating a weak result. Since
Fisher’s exact test is based on the combined smells of the different
versions of the projects, we calculated the 𝜒2 for each design
issue separately for the different versions. The 𝜒2 test showed that
Cognitive Complexity, Cyclomatic Complexity, Too Many Methods,
Collapsible If Statements, Simplify Conditional, Excessive Parameter
List, Abstract Class Without Any Method, Switch Density, and
Avoid Deeply Nested If Statements have p-values < 0.05 (therefore,
rejecting 𝐻02) and high Cramer’s V (Cramer’s V > 0.6), indicating a
strong relationship between the above-mentioned design issues and
vulnerabilities. From the manual analysis, we found that despite the
vulnerability-inducing code being modified, the design issues were
still present after the vulnerabilities were fixed. Therefore, there is
no direct indication that design issues are inducing vulnerabilities or
design issues-ridden code is more prone to vulnerabilities.

Due to space limitations, the results for the 𝜒2 statistical test for
RQ1 and RQ2 are available in the replication package.

5 DISCUSSION
Our results indicate that some code smells (God Class, Lazy
Class, Complex Class, Large Class, Refused Bequest, Data Class,
Feature Envy, and Long Method) and architectural smells (Hub Like
Dependency, Class Cyclic Dependency, and Unhealthy Inheritance
Hierarchy) have a statistically significant relationship with
vulnerabilities.

Smells increase the maintainability and complexity and reduce
the understandability of the code [2], leading to more defects in
the code segments, which can be exploited [27]. God class has
a high functional complexity [23], and Complex Class has high
cyclomatic complexity [1]. God Classes are also frequently changed
in the software development process, leading to more defects in
those classes [27]. Previous studies mentioned that complexity
metrics are early indicators of vulnerable code and complex code
is related to vulnerabilities [5, 16, 28, 29]. Therefore, due to their
complexity and defect-inducing nature, God Class and Complex
Class can be potentially related to vulnerabilities. Feature Envy, a
method level code smell is correlated with low-quality code and
occurs when one object exposes its data fields to another object
instead of doing the computation itself [16]. Data exposure can
potentially lead to information leakage vulnerability. Large Class
and Long Method are difficult to reuse and understand, making their
maintenance harder [2]. During the lifetime of the software, the
high maintenance cost, lack of understandability, and re-usability
hinder developers from writing defect-free code [22], and attackers
can exploit these defects created due to such maintenance issues.

Although previous research did not find a significant relationship
between architectural smells and vulnerabilities [30], we found
that three architectural smells (Hub Like Dependency, Class
Cyclic Dependency, and Unhealthy Inheritance Hierarchy) have
a statistically significant relationship with vulnerabilities. The
architectural subsystems in Hub Like Dependency, or Class Cyclic

Dependency are hard to release, maintain, and reuse [12]. The
structural dependencies among these architectural subsystems
may incur architectural flaws, and these flaws cause modularity
violations and improper inheritance, potentially leading to
exploitable security issues [10]. In addition, the files involved in
architectural patterns have significantly higher number of bugs, and
change rates than the average files in a project [26]. However, there
is a need for a more in-depth analysis to investigate the relationship
between vulnerabilities and architectural smells.

Though the statistical analysis showed a significant relationship
between some of the smells and vulnerabilities due to their
characteristics, the manual analysis of the vulnerability fix-commit
did not support this finding. This can be due to the fix-commit
changes in the code segment focusing on resolving the
vulnerabilities rather than refactoring the code to remove smells.
It is possible that some smells were removed as part of the
vulnerability patching process. However, our results showed that
the smells were still present in the classes even after resolving the
vulnerabilities. Therefore, to resolve the vulnerabilities, developers
are more concerned about fixing or changing the associated code
segments rather than addressing the code smells. Yamashita et
al. [35] reached similar conclusions and reported that developers
often sacrifice the code quality and prioritize delivering a product
on time.

The design issues (Cognitive Complexity, Cyclomatic Complexity,
Too Many Methods, Collapsible If Statements, Simplify Conditional,
Excessive Parameter List, Abstract Class Without Any Method,
Switch Density, and Avoid Deeply Nested If Statements) have a
statistically significant relationship with vulnerabilities. Cognitive
Complexity combines the code’s spatial complexity with the
architectural complexity of control statements [4]. Additionally,
Simplify Conditional, Switch Density, and Avoiding Deeply Nested
If Statements are closely related to the nesting complexity and
complexity of control statements [5]. As complexity metrics and
complex code are related to vulnerabilities [5, 28], Cognitive
Complexity, Simplify Conditional, Switch Density, and Avoiding
Deeply Nested If Statements are also related to vulnerability due
to their complex nature. Cyclomatic Complexity is the number of
independent paths through a program unit [8]. Classes with higher
Cyclomatic Complexity are usually more challenging to maintain
or test, and therefore cause issues that can be further exploited.
Camilo et al. [3] found that design issues can lead to exploitable
defects, supporting our findings.

Though the statistical analysis showed a significant relationship
between some design issues and vulnerabilities, the manual analysis
of the vulnerability fix-commit did not align with this finding.
Our analysis showed that design issues were still present in the
classes even after resolving the vulnerabilities. Design issues can
impact software quality in the future [31]. Therefore, it is possible
that developers prioritize the changes required for resolving the
vulnerabilities rather than focusing on other code issues. Szoke
et al. [32] found that fixing a minor issue in the software does
not increase the code quality, but bulk fixing does. Similarly, the
vulnerability fixes are focused on the impacted code segments, and
the entire class or method is not being refactored during the fix.
Therefore, vulnerability fixing will not necessarily not improve
code quality nor resolve the design issues or smells.

19

An Exploratory Study on the Relationship of Smells and Design Issues with Software Vulnerabilities MSR4P&S ’22, November 18, 2022, Singapore, Singapore

Despite some code smells and design issues having a significant
statistical relationship with vulnerabilities, they are still present in
the code even after resolving the vulnerabilities. Code with code
smells and design issues is more prone to issues such as defects and
vulnerabilities. Therefore, developers should prioritize them as a
precautionary measure to hinder any future vulnerabilities.

6 THREATS TO VALIDITY
We looked into the smells and design issues, but other factors
(e.g., change-proneness and defect-proneness) may impact the
relationship between smells, design issues, and vulnerabilities.
To mitigate the threat associated with Fisher’s exact test on the
combined frequencies of smells and issues, we calculated the 𝜒2

for each version separately.
This study is language and ecosystem specific because we only

studied projects written in Java and from the Apache ecosystem.
Though the nine systems we analyzed have different sizes and
diverse functionality, different software ecosystems have different
characteristics [18, 20]. Therefore, we cannot generalize our results
for projects written in other programming languages or other
software ecosystems. However, our findings are applicable for other
systems written in Java if they have published their vulnerability
details with fix-commits, CVE-IDs, and vulnerable and fixed
versions. Therefore, our study can be replicated for other systems
written in Java.

7 CONCLUSION
This work presented a preliminary study of nine Apache systems to
determine the relationship between smells (code and architectural),
design issues, and software vulnerabilities. We found that some
smells and design issues have a statistically significant relationship
with vulnerabilities. Though some smells and design issues are
significantly related to vulnerabilities, themanual analysis shows no
direct indication that smells or design issues induce vulnerabilities.
In addition, we found that smells and design issues are still present
in the classes, even after fixing the vulnerabilities.

In the future, we will analyze the historical evolution of
code segments to identify how the smells, design issues, and
vulnerabilities are related. We will also explore the impact
of additional criteria, e.g., change-proneness, on software
vulnerabilities and also, investigate the smells and design issues
that did not have a statistically significant relationship with
vulnerabilities.

ACKNOWLEDGEMENTS
This research is partly supported by an NSERC Collaborative
Research and Training Experience (CREATE) grant on Software
Analytics at the University of Saskatchewan.

REFERENCES
[1] W. H Brown, R. C Malveau, H. McCormick, and T. J Mowbray. 1998. AntiPatterns:

refactoring software, architectures, and projects in crisis. John Wiley & Sons, Inc.
[2] A. S Cairo, G. de F Carneiro, and M. P Monteiro. 2018. The impact of code smells

on software bugs: A systematic literature review. Information 9, 11 (2018), 273.
[3] F. Camilo, A. Meneely, and M. Nagappan. 2015. Do bugs foreshadow

vulnerabilities? a study of the chromium project. In Conf. on MSR. 269–279.
[4] J. K. Chhabra. 2011. Code cognitive complexity: a newmeasure. InWorld Congress

on Eng., Vol. 2. 6–8.

[5] I. Chowdhury and M. Zulkernine. 2011. Using complexity, coupling, and cohesion
metrics as early indicators of vulnerabilities. Journal of Sys. Arch. 57, 3 (2011),
294–313.

[6] M. D’Ambros, A. Bacchelli, and M. Lanza. 2010. On the impact of design flaws
on software defects. In Int. Conf. on Quality Softw. 23–31.

[7] P. Danphitsanuphan and T. Suwantada. 2012. Code smell detecting tool and code
smell-structure bug relationship. In Spring Congress on Eng. and Tech. 1–5.

[8] C. Ebert, J. Cain, G. Antoniol, S. Counsell, and P. Laplante. 2016. Cyclomatic
Complexity. IEEE Softw. 33, 6 (2016), 27–29.

[9] A. A. Elkhail and T. Cerny. 2019. On relating code smells to security vulnerabilities.
In Intl. Conf. on BigDataSecurity, HPSC and IDS. 7–12.

[10] Q. Feng, R. Kazman, Y. Cai, R. Mo, and L. Xiao. 2016. Towards an
architecture-centric approach to security analysis. In Conf. on Softw. Arch.
(WICSA). 221–230.

[11] R. A. Fisher. 1992. Statistical methods for research workers. In Breakthroughs in
statistics. Springer, 66–70.

[12] F. A. Fontana, V. Lenarduzzi, R. Roveda, and D. Taibi. 2019. Are architectural
smells independent from code smells? An empirical study. Journal of Sys. and
Softw. 154 (2019), 139–156.

[13] M. Fowler. 2018. Refactoring: improving the design of existing code.
[14] S. M. Ghaffarian and H. R. Shahriari. 2017. Software Vulnerability Analysis

and Discovery Using Machine-Learning and Data-Mining Techniques: A Survey.
ACM Comput. Surv. 50, 4, Article 56 (2017), 36 pages.

[15] A. Gong, Y. Zhong, W. Zou, Y. Shi, and C. Fang. 2020. Incorporating Android
Code Smells into Java Static Code Metrics for Security Risk Prediction of Android
Applications. In Int. Conf. on Softw. Quality, Reliability and Security (QRS). 30–40.

[16] M. Gradišnik and M Hericko. 2018. Impact of code smells on the rate of defects
in software: A literature review. In CEUR, Vol. 2217. 27–30.

[17] A. Gupta, V. Suri, and V. Vincent. 2020. An Empirical Examination of the
Relationship between Code Smells and Vulnerabilities. Int. Journal of Computer
Applications 176, 32 (2020), 1–9.

[18] R. Hoving, G. Slot, and S. Jansen. 2013. Python: Characteristics identification of
a free open source software ecosystem. In Int. Conf. on Digital Ecosystems and
Tech. (DEST). 13–18.

[19] A. Hovsepyan, R. Scandariato, W. Joosen, and J. Walden. 2012. Software
vulnerability prediction using text analysis techniques. In Int. workshop on
Security Measurements and Metrics. 7–10.

[20] J. Joshua, D. Alao, S. Okolie, and O. Awodele. 2013. Software ecosystem:
features, benefits and challenges. Int. Journal of Advanced Computer Science
and Applications 4, 8 (2013).

[21] R. Kuhn, M. Raunak, and R. Kacker. 2018. Can reducing faults prevent
vulnerabilities? Computer 51, 7 (2018), 82–85.

[22] Rikard Land. 2002. Measurements of software maintainability. In ARTES Graduate
Student Conf. 1–7.

[23] M. Lanza and R.Marinescu. 2007. Object-orientedmetrics in practice: using software
metrics to characterize, evaluate, and improve the design of object-oriented systems.
Springer Science & Business Media.

[24] G. McGraw. 2004. Software security. IEEE Security & Privacy 2, 2 (2004), 80–83.
[25] A. Meneely, H. Srinivasan, Ayemi Musa, Alberto R. T., M. Mokary, and

B. Spates. 2013. When a Patch Goes Bad: Exploring the Properties of
Vulnerability-Contributing Commits. In Int. Symp. on Emp. Softw. Eng. and
Measurement. 65–74.

[26] R. Mo, Y. Cai, R. Kazman, and L. Xiao. 2015. Hotspot patterns: The formal
definition and automatic detection of architecture smells. In Conf. on Softw. Arch.
51–60.

[27] S. M Olbrich, D. S Cruzes, and D. I. Sjøberg. 2010. Are all code smells harmful?
A study of God Classes and Brain Classes in the evolution of three open source
systems. In Int. Conf. on Softw. maintenance. 1–10.

[28] Y. Shin, A. Meneely, L. Williams, and J. A Osborne. 2010. Evaluating
complexity, code churn, and developer activity metrics as indicators of software
vulnerabilities. IEEE transactions on Softw. Eng. 37, 6 (2010), 772–787.

[29] Y. Shin and L. Williams. 2008. An empirical model to predict security
vulnerabilities using code complexity metrics. In Int. Symp. on Empirical Softw.
Eng.and measurement. 315–317.

[30] K. Z. Sultana, Z. Codabux, and B. Williams. 2020. Examining the relationship of
code and architectural smells with software vulnerabilities. In APSEC. 31–40.

[31] G. Suryanarayana, G. Samarthyam, and T. Sharma. 2014. Refactoring for software
design smells: managing technical debt. Morgan Kaufmann.

[32] G. Szoke, G. Antal, C. Nagy, R. Ferenc, and T. Gyimóthy. 2014. Bulk fixing coding
issues and its effects on software quality: Is it worth refactoring?. In Int. Working
Conf. on Source Code Analysis and Manipulation. IEEE, 95–104.

[33] C. Theisen and L. Williams. 2020. Better together: Comparing vulnerability
prediction models. Information and Softw. Tech. 119 (2020), 106204.

[34] J. Walden, J. Stuckman, and R. Scandariato. 2014. Predicting Vulnerable
Components: Software Metrics vs Text Mining. In Int. Symp. on Soft. Reliability
Eng. IEEE, 23–33.

[35] A. Yamashita and L. Moonen. 2013. Do developers care about code smells? An
exploratory survey. In Working Conf. on Reverse Eng. (WCRE). IEEE, 242–251.

20

Counterfeit Object-Oriented Programming Vulnerabilities: An
Empirical Study in Java

Joanna C. S. Santos
joannacss@nd.edu

University of Notre Dame
Notre Dame, IN, USA

Xueling Zhang
xueling.zhang@rit.edu

Rochester Institute of Technology
Rochester, NY, USA

Mehdi Mirakhorli
mxmvse@rit.edu

Rochester Institute of Technology
Rochester, NY, USA

ABSTRACT
Many modern applications rely on Object-Oriented (OO) design
principles, where the basic system components are objects and
classes. They share objects with other processes, store them in
disk/files for future retrieval or transport them over network to
other systems. Object-oriented programs leverage numerous dy-
namic features and design principles such as runtime dispatching
and object-oriented callbacks which allow flexible software design.
Although seemingly innocuous, these features can be abused by
the attackers to hijack the program’s control flow to an undesir-
able behavior. This is referred to as Counterfeit Object-Oriented
Programming (COOP), in which attackers hijack objects in the pro-
gram in order to create a sequence of method calls that introduce a
malicious behavior. COOP is a type of code reuse attack in which
a hacker hijacks objects (gadgets) in the program and use that to
control the program execution flow via manipulating the sequence
of methods and data being passed among these methods (gadget
chains). In this paper, we describe a preliminary empirical investiga-
tion of COOP attacks in real software systems caused by untrusted
object deserialization. In this preliminary study, we investigated
the severity of these attacks, their consequences, and how they
were mitigated by developers. Furthermore, we used the findings
to create a dataset of vulnerable software projects and their fixes.

CCS CONCEPTS
• Security and privacy → Software security engineering; •
Software and its engineering→ Software development techniques.

KEYWORDS
common weakness enumeration, counterfeit-object oriented pro-
gramming, untrusted object deserialization
ACM Reference Format:
Joanna C. S. Santos, Xueling Zhang, and Mehdi Mirakhorli. 2022. Coun-
terfeit Object-Oriented Programming Vulnerabilities: An Empirical Study
in Java. In Proceedings of the 1st International Workshop on Mining Soft-
ware Repositories Applications for Privacy and Security (MSR4P&S ’22), No-
vember 18, 2022, Singapore, Singapore. ACM, New York, NY, USA, 8 pages.
https://doi.org/10.1145/3549035.3561183

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
MSR4P&S ’22, November 18, 2022, Singapore, Singapore
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9457-4/22/11. . . $15.00
https://doi.org/10.1145/3549035.3561183

1 INTRODUCTION
Many modern applications, whether developed in Java, Python,
PHP or other languages, rely on Object-Oriented (OO) design prin-
ciples [5], where the basic system components are objects and
classes. Many OO architectures [9] directly operate on objects; they
share these objects with other processes [9, 17], store them in disk/-
files for future retrieval [3] or transport them over network to other
systems [9, 15]. The encapsulations provided by object structure,
the concept of classes, and inheritance has increased programs
reusability and extensibility [24]. Polymorphism has enabled sep-
aration of the client class from implementation code, and allows
the object to decide which form of the function to implement at
compile-time (overloading) as well as runtime (overriding).

Object-oriented programs also leverage numerous other dynamic
features and design principles, which allow flexible design. They
commonly use runtime dispatching to implement object polymor-
phism [7]. Dispatching is typically implemented using an indirect
function call. Similarly, program constructs such as reflection allows
an object-oriented program to modify its structure and behavior;
other dynamic mechanisms such as object-oriented callbacks enable
the application to handle subscribed events, arising at runtime,
through a listener interface and respond using predefined concrete
implementations. These features can be abused by the attackers
to hijack the program’s control flow to an undesirable behavior.
This is referred to as Counterfeit Object-Oriented Programming
(COOP) [23, 30]. COOP is a type of code reuse attack in which a
hacker hijacks objects in the program (gadgets) and use them to
control the program execution flow via manipulating the sequence
of methods and data being passed among these methods (gadget
chains).

Counterfeit object vulnerabilities are notoriously difficult to de-
tect and even harder to prevent [30, 35]. Mainly because they do not
exhibit the revealing characteristics of existing attack approaches,
and exhibit control flow and data flow similar to those of benign
code execution [27, 30]. An instance of such attack isDeserialization
of Untrusted Data which is pervasive across Java applications, and
it is also emerging in Python programs due to the use of object
marshaling. Furthermore, there are numerous object-oriented pro-
gramming approaches for transmitting, storing or extending the
behavior of objects that can result in programs vulnerable to COOP
attacks.

The literature had explored COOPs in lower-level languages
such as C++ [23, 30], but these languages do not include metapro-
gramming features. Other languages (e.g., Python, PHP, and Java)
contain programming constructs (e.g., native calls, reflection, and
object serialization) which are used to load classes, invoke meth-
ods, instantiate objects and extend the programs’ functionalities

21

https://orcid.org/0000-0001-8743-2516
https://orcid.org/0000-0002-3156-906X
https://orcid.org/0000-0003-3470-6856
https://doi.org/10.1145/3549035.3561183
https://doi.org/10.1145/3549035.3561183

MSR4P&S ’22, November 18, 2022, Singapore, Singapore Joanna C. S. Santos, Xueling Zhang, and Mehdi Mirakhorli

at runtime. Although seemingly innocuous, these language con-
structs place the system at the risk of attackers tampering with
objects (gadgets) in order to successfully execute code (e.g., load a
remote class, instantiate objects from it and execute its methods
with a malicious purpose). Therefore, in this paper, we present a
preliminary empirical study of COOP attacks in programs written
in Java. We focused on COOP attacks caused by untrusted object
deserialization.

In this study, we analyzed a total of 17 vulnerability reports
caused by untrusted object deserialization. By collecting and ana-
lyzing several artifacts related to the problem (e.g., released patch),
we investigated the severity of COOP attacks caused by untrusted
object deserialization (RQ1), what are their consequences (RQ2),
and how developers mitigated the problem (RQ3).

We observed that these COOP attacks lead to vulnerabilities
with a high/critical severity. Furthermore, the investigated attacks
always resulted in remote code execution, where an attacker is able
to craft an object in such a way they could invoke arbitrary methods
and execute malicious commands. Finally, we found that developers
mitigate the problem in three differentways: by preventing sensitive
operations to be reachable from deserialization constructs, or by
enforcing the integrity of deserialized objects, or by implementing
compartmentalization.

The contributions of this paper are:
• A preliminary empirical investigation of COOP vulnerabilities
caused by untrusted object deserialization.

• Adiscussion of their consequences, severity, andmitigations, which
gives insights to developers on how they can avoid these vulner-
abilities.

• A dataset [28] of COOP vulnerabilities caused by untrusted object
deserialization.
This paper is organized as follows: Section 2 briefly describes

COOP vulnerabilities to ensure that the essence of the paper can be
understood by a broader audience. Section 3 describes our method-
ology in details. Section 4 presents the qualitative analysis of COOP
vulnerability reports in order to identify their root causes and miti-
gations. Section 5 elaborates on threats to the validity of this work.
Section 6 presents related work, and Section 7 concludes this paper,
including planned future work.

2 BACKGROUND
To perform a COOP attack, attackers need to take control over

one object in the application (the initial object) [30]. The hijacking
takes place by misusing a benign feature in a program that receives
objects outside its trust boundary (e.g., using a serialized object re-
ceived from a socket, manipulating an object created by an external
plug-in, etc.).

This initial object will have its fields initialized with attacker-
controlled data. An object may contain other objects in its fields,
creating potentially complex graph-like object layouts [8]. When
the program later invokes one of its methods, it leads to a sequence
of malicious method calls (gadget chains). The classes involved
in a malicious method execution chain are referred to as gadget
classes.

On one hand, in lower level languages, the attack is performed
by manipulating pointers in the program. For example, in C++, the

attacker manipulates the vtables (virtual method tables) such that
it triggers a sequence of method calls that result in a dangerous
behavior [30]. In Java, on the other hand, attackers are not able to
directly manipulate pointers and memory areas, instead, it would
rely on objects already available in the classpath for use. Moreover,
unlike C++, Java has reflection, a metaprogramming feature that
allows classes to be loaded at runtime, and have their methods
invoked; creating space for attackers to even be able to load remote
classes (i.e., outside the classpath).

Figure 1 contains three COOP attack scenario examples in Java.
These attacks are caused by misusing three commonly used benign
features: object deserialization, Remote Method Invocation (RMI),
and the Java Naming and Directory Interface™ (JNDI). In these
examples, consider that the classes in Listing 1 are available in the
classpath. We explain these attacks in the next subsections.

2.1 Untrusted Object Deserialization
The first attack (Figure 1a) relies on untrusted object deserialization.
Object serialization (also known as “marshaling”) is a mechanism
in which an object is converted to an abstract representation (e.g.,
bytes, XML, JSON, etc.) that models the object’s state (i.e., fields’
values and code). This abstract representation is suitable for net-
work transportation, storage, and inter-process communication.
The receiver of a serialized object has to parse the abstract rep-
resentation in order to reconstruct a new object, a process called
object deserialization (or “unmarshalling”).

Although object serialization seems innocuous, several dese-
rialization mechanisms allow arbitrary types to be deserialized
and invoke methods from the objects’ classes during their recon-
struction (e.g., default constructors, getter/setter methods, callback
methods (also known as “magic methods”, etc.) [19]. Attackers could
leverage these methods invoked during object deserialization to
conduct COOP attacks that can result in resource consumption
(denial-of-service attacks), application crashes and remote code
execution [8, 25].

The class ObjectOutputStream is part of Java’s built-in dese-
rialization API. It reconstructs an object from a byte stream that
contains the object’s fields values. This class can reconstruct any
object, as long as its class implement the java.io.Serializable
interface. If implemented by a Serializable class, the callback
methods listed below are invoked by Java during deserialization.
These methods, henceforth referred to as “magic methods” , are
the ones used by attackers to create a malicious sequence of method
invocations (gadget chain):

(1) void readObject(ObjectInputStream): it customizes the re-
trieval of an object’s state from the stream.

(2) void readObjectNoData(): in the exceptional situation that
a receiver has a subclass in its classpath but not its superclass,
this method is invoked to initialize the object’s state.

(3) Object readResolve(): this is the inverse of writeResolve.
It allows classes to replace a specific instance that is being read
from the stream.

(4) void validateObject(): it validates an object after it is dese-
rialized. For this callback to be invoked, the class has to imple-
ment the ObjectInputValidation interface and register the

22

Counterfeit Object-Oriented Programming Vulnerabilities: An Empirical Study in Java MSR4P&S ’22, November 18, 2022, Singapore, Singapore

class Task implements Runnable,
Serializable {

private String cmd;

public CommandTask(String c) {
this.cmd = c;

}

public void run() { /* sink */
Runtime.getRuntime().exec(cmd);

}
}

class TaskManager implements Serializable {
private Runnable task;
public TaskManager(Runnable t){ this.task = t; }
private void readObject(ObjectInputStream ois){
ois.defaultReadObject();
task.run();

}
}
interface Analyzer extends Remote {
void analyze(Runnable r);
void cleanResults();

}

class AnalyzerImpl implements Analyzer{
private File results;
public AnalyzerImpl(File f){
this.results = f;

}
public void analyze(Runnable r){
r.run();

}
public void cleanResults(){
results.delete(); /* sink */

}
}

Listing 1: “Gadget classes” that can be used in a COOP attack to trigger a remote code execution.

class IndexServlet extends HttpServlet {
protected void doGet(HttpServletRequest rq,

HttpServletResponse rs) {
Cookie c = getCookieByName(rq, "user");
if (c != null) {
byte[] bytes = Base64.getDecoder()
.decode(c.getValue());

ObjectInput in = new ObjectInputStream(
new ByteArrayInputStream(bytes)

);
User u = (User) in.readObject();

} else { /* ... */ }
}

}

(a)

class RMIServer {
public static void main(String a[]){
try {
Analyzer obj = new AnalyzerImpl(null);
Analyzer stub =

(Analyzer) UnicastRemoteObject
.exportObject(obj, 0);

Registry registry =
LocateRegistry.getRegistry();

registry.bind("analyzer", stub);
}catch (Exception e)
{ /* ... */ }

}
}

(b)

class JNDIExample{
public static void main(String[]a){
try {
String name = a[0];
Context ctx =
new InitialContext();

Analyzer analyzer =
(Analyzer) ctx.lookup(name);

analyzer.cleanResults();
} catch (Exception e) {
/* ... */

}
}

}

(c)

Figure 1: COOP attacks that rely on (a) untrusted object deserialization, (b) RMI, and (c) JNDI.

validator by invoking the method registerValidation from
ObjectInputStream class.
As an example, Figure 1a contains a code snippet from a sample

Web application (IndexServlet) that retrieves the “user” cookie
from the HTTP request. This cookie is expected to contain a serial-
ized User object encoded using Base64. An attacker could leverage
the deserialization process to conduct a COOP attack by using two
available serializable classes in the classpath (TaskManager and
Task — gadget classes). An attacker would create a TaskManager
object (taskMgr) as shown in Figure 2a. Then, the attacker serial-
izes and encodes this malicious object in base64 and sends it as the
“user” cookie to the Web application.

When the web application deserializes the object in the cookie,
Java’s deserialization mechanism (ObjectInputStream) invokes the
callback method readObject() from the TaskManager class. It
triggers the chain of method calls listed in Figure 2b. This gadget
chain ends in a “sink”1 – exec() – that executes a command to
remove all files (“rm -rf /”).

Although this request with a malicious serialized object will later
trigger a ClassCastException (because the application attempt
to cast the read object as a User type), the malicious command
was already executed, because the type cast check occurs after the
deserialization process took place.

2.2 RMI-based Attacks
The second example (RMIServer in Figure 1b) includes a sample
Remote Method Invocation (RMI) server that exports an instance
1Sinks are methods in the program’s scope that performs sensitive operations, such as
executing commands and manipulating file

of the AnalyzerImpl class. An attacker can implement an RMI
client that first looks up this object by its name (“analyzer”) on
the RMI server. Subsequently, this malicious client makes a remote
procedure call to the analyzer(Runnable r) method passing as
argument the malicious object task (in Figure 2a). This triggers
the execution shown in Figure 2c which will lead to a recursive
deletion of files in the root directory.

2.3 JNDI-based Attacks
In the third example (JNDIExample in Figure 1c), an application
performs an object lookup by name using Java Naming and Direc-
tory Interface™ (JNDI) [32]. An attacker can implement a malicious
RMI server that export the analyzer object in Figure 2a and binds
it to the name “exploit”. Subsequently, the attacker can invoke the
program making a lookup to “rmi:/exploit”, which will inject the
malicious object and execute the call chain in Figure 2d, resulting
in a deletion of the root directory.

3 METHODOLOGY
In this study, we focused on investigating COOP attacks caused
by untrusted object deserialization (described in Section 2.1). In this
section, we first introduce our research questions (Section 3.1), then
we explain the methodology we followed to answer each of them
(Section 3.2), and finally, we discuss how we compile our artifacts
as a dataset (Section 3.3).

3.1 Research Questions
We answered the following research questions in this paper:

23

MSR4P&S ’22, November 18, 2022, Singapore, Singapore Joanna C. S. Santos, Xueling Zhang, and Mehdi Mirakhorli

Potential CVEs
- CVE-2021-44228 (log4J)

Malicious Objects:
Task task =

new Task("rm -rf /");

TaskManager taskMgr =

new TaskManager(task);

Analyzer analyzer =

new AnalyzerImpl(new File("/"));

Call Stack for Deserialization:

IndexServlet.doGet(…)

java.io.ObjectInputStream.readObject()

TaskManager.readObject(...)

Task.run()

Runtime.exec("rm -rf /")

Call Stack for JNDI:

JNDIExample.main("rmi:/exploit")

AnalyzerImpl.cleanResults()

File.delete()

Call Stack for RMI:

RMIExample.main(...)

AnalyzerImpl.analyze(task)

Task.run()

Runtime.exec("rm -rf /")

(a)

Potential CVEs
- CVE-2021-44228 (log4J)

Malicious Objects:
Task task =

new Task("rm -rf /");

TaskManager taskMgr =

new TaskManager(task);

Analyzer analyzer =

new AnalyzerImpl(new File("/"));

Call Stack for Deserialization:

IndexServlet.doGet(…)

java.io.ObjectInputStream.readObject()

TaskManager.readObject(...)

Task.run()

Runtime.exec("rm -rf /")

Call Stack for JNDI:

JNDIExample.main("rmi:/exploit")

AnalyzerImpl.cleanResults()

File.delete()

Call Stack for RMI:

RMIExample.main(...)

AnalyzerImpl.analyze(task)

Task.run()

Runtime.exec("rm -rf /")

(b)

Potential CVEs
- CVE-2021-44228 (log4J)

Malicious Objects:
Task task =

new Task("rm -rf /");

TaskManager taskMgr =

new TaskManager(task);

Analyzer analyzer =

new AnalyzerImpl(new File("/"));

Call Stack for Deserialization:

IndexServlet.doGet(…)

java.io.ObjectInputStream.readObject()

TaskManager.readObject(...)

Task.run()

Runtime.exec("rm -rf /")

Call Stack for JNDI:

JNDIExample.main("rmi:/exploit")

AnalyzerImpl.cleanResults()

File.delete()

Call Stack for RMI:

RMIExample.main(...)

AnalyzerImpl.analyze(task)

Task.run()

Runtime.exec("rm -rf /")

(c)

Potential CVEs
- CVE-2021-44228 (log4J)

Malicious Objects:
Task task =

new Task("rm -rf /");

TaskManager taskMgr =

new TaskManager(task);

Analyzer analyzer =

new AnalyzerImpl(new File("/"));

Call Stack for Deserialization:

IndexServlet.doGet(…)

java.io.ObjectInputStream.readObject()

TaskManager.readObject(...)

Task.run()

Runtime.exec("rm -rf /")

Call Stack for JNDI:

JNDIExample.main("rmi:/exploit")

AnalyzerImpl.cleanResults()

File.delete()

Call Stack for RMI:

RMIExample.main(...)

AnalyzerImpl.analyze(task)

Task.run()

Runtime.exec("rm -rf /")

(d)

Figure 2: (a) Malicious objects crafted by an attacker. Call stacks for a successful COOP attack that relied on (b) object
deserialization, (c) RMI, and (d) JNDI.

RQ1 How severe are COOP attacks caused by untrusted object
deserialization?

We focused on understanding what is the perceived severity of
these problems by developers.

RQ2What are the consequences of COOP attacks related to un-
trusted object deserialization vulnerabilities?

We aimed to identify the faulty behavior observed when an un-
trusted object deserialization vulnerability is successfully executed.

RQ3 How are COOP vulnerabilities related to untrusted object
deserialization mitigated?

We studied the strategies employed by developers to fix these
vulnerabilities in real software systems.

3.2 Answering the Research Questions
To answer these questions, we conducted an in-depth analysis of
vulnerability reports (CVEs) in the National Vulnerability Database
(NVD). NVD is a well-known vulnerability database, which cur-
rently tracks over 191,000 vulnerabilities that exist in a variety of
software products, both open and closed source.

Vulnerabilities disclosed in NVD are assigned a unique identi-
fier known as “CVE ID” (Common Vulnerabilities and Exposure
Identifier). Besides a CVE ID, each entry in NVD includes a short
description of the problem and a list of references, i.e., links to other
Websites (such as issue tracking systems) that may contain more
details about the CVE instance. NVD also indicates the software’s
releases affected by the vulnerability and a severity score.

Some CVE instances may also include CWE tags that indicate the
vulnerability type. These tags are assigned by security analysts from
the entities that reviewed the vulnerability report. The CWE tag
refers to an entry from the Common Weakness Enumeration (CWE)
dictionary [33], which enumerates common software/hardware
weaknesses that may lead to vulnerabilities. A weakness denotes a
family of security defects that share one or more aspect in common,
such as a similar fault (root cause), failure (consequence), or fix
(repair) [22]. Thus, the CWE tag is used by the NVD as a way to
classify vulnerabilities.

Therefore, we first retrieved from NVD all the CVEs that either
contained the keyword “serializ” in its description or whose CWE
tag was equal to CWE-520 (Deserialization of Untrusted Data) [34].
Subsequently, we disregarded CVEs that (i) were in closed source
systems, since there would not be enough public information for us

to answer our research questions; or (ii) were in software systems
implemented in a language other than Java.

We randomly selected a subset of 17 CVEs to identify its severity,
consequences, andmitigation techniques implemented to fix the issue.
Afterwards, we performed a qualitative analysis of these 17 CVEs
and their associated artifacts to answer our research questions. We
performed the following steps:

(1) For each CVE, we extracted its metadata from NVD (description,
CWE tag, references, and severity score).

(2) We relied on the URLs in the references to identify the corre-
sponding entry in the project’s issue tracking system. From the
issue tracking system entry, we then verify whether the vulner-
ability was acknowledged by developers and fixed. If a patch
was publicly released, we collect both the project’s vulnerable
version and fixed version (that includes the fix).

(3) We manually analyzed these collected artifacts in order to cap-
ture information regarding the CVE’s vulnerable version and
fixed version, its severity, its consequences, as well as the mitiga-
tion technique implemented by developers to fix the problem.
We obtained the severity for each CVE based on the CVSS score2
provided by NVD. To identify the consequences, and mitigation
techniques, we performed a qualitative analysis of the vulnera-
bility report and associated artifacts. This qualitative analysis
involved an open coding [21] in which we iteratively reviewed
the artifacts and annotated each vulnerability with codes: one
to indicate the mitigation technique used to fix the problem,
and other(s) to indicate the consequence(s) of the vulnerabil-
ity. During this open coding, we either annotated CVEs with
codes already used or created new codes that emerged from the
data (if the existing codes were not suitable for the CVE being
analyzed). This open coding was performed by the first author,
who has eight years of experience in software security.

After performing the above steps, we used the collected artifacts
to answer each RQ as follows:

RQ1 We relied on the CVSS score provided by NVD, which is a
number that ranges from 0 (least severe) to 10 (most severe).

RQ2 We answer this question by analyzing the consequences we
observed while performing the open coding of CVEs.

RQ3 Similar to RQ2, this question is answered by inspecting the
results of our open coding, in which we observed the differ-
ent ways developers patched their projects.

2The Common Vulnerability Scoring System (CVSS) is a framework [20] used to
measure the severity of a vulnerability.

24

Counterfeit Object-Oriented Programming Vulnerabilities: An Empirical Study in Java MSR4P&S ’22, November 18, 2022, Singapore, Singapore

3.3 A Dataset of COOP Vulnerabilities
After our qualitative analysis, we compiled these artifacts as a man-
ually curated dataset of COOP vulnerabilities caused by untrusted
object deserialization. This dataset includes a CSV file with the
following metadata [28]: (i) CVE ID; (ii) the vulnerable and fixed
versions of the project; (iii) consequence; (iv) CVSS score (severity
– low, medium, high, critical); (v)mitigation technique.

4 RESULTS
In the next sections, we discuss our findings and answer our RQs.

4.1 RQ1: Severity
Table 1 presents the breakdown of the severity observed in the
analyzed CVEs. The severity is based on the categorization given
by the CVSS score v3. For two CVEs we analyzed3, however, the
severity score was based on CVSS v2 because there was no score
provided using the version 3.x of the CVSS framework. The CVSS
score ranges from 0 to 10, where a score from 0.1-3.9 is considered
as low severity, 4.0-6.9 as medium severity, 7.0-8.9 as high severity,
and 9.0-10.0 as critical severity.

Table 1: Severity of COOP vulnerabilities related to untrusted
object deserialization

Severity
Critical
(9.0-10.0)

High
(7.0-8.9)

Medium
(4.0-6.9)

CVEs 6 (35.2%) 9 (52.9%) 1 (5.8%)

We observe from the findings reported in Table 1 that the major-
ity of vulnerabilities are classified as high severity. We also notice
that 6 CVEs (35%) were also categorized as critical vulnerabilities.
None of the vulnerabilities analyzed had a low severity score – the
lowest observed CVSS score was 5.9 (medium) and the highest was
9.8 (critical).

One of the reasons as to why the severity scores were mostly
high/critical was due to the fact that all the vulnerabilities had an
attack vector through the network. That is, a hacker could deploy
the attack remotely, making it easier to conduct successful attacks.
This finding highlights the importance of studying COOP-related
vulnerabilities.

4.2 RQ2: Consequences
Weobserved that all vulnerabilities lead to remote code execution. For
one of the vulnerabilities (CVE-2016-1000031), besides code execu-
tion, an attacker could also manipulate local files (e.g., delete/create
local files).

The main attack vector used by intruders to execute arbitrary
commands was via the use of Java reflection. That is, the gadget
chain lead to a reflection construct that allowed attacks to load
arbitrary classes, create instances, and invoke their methods using
malicious data.

3These CVEs were: CVE-2015-6420 and CVE-2015-8103.

4.3 RQ3: Mitigation Techniques
By scrutinizing these 17 vulnerability reports, we observed that
there were three ways that developers fixed COOP vulnerabilities
caused by untrusted object deserialization: (i) by preventing un-
trusted data to reach a sink (unreachable sinks); (ii) by enforcing
the integrity of serialized and deserialized objects (enforcing in-
tegrity); or (iii) compartmentalization. Themitigation techniques
and their corresponding category is presented in Table 2.

Table 2: Mitigation techniques for untrusted object deserial-
ization

Category Mitigation #CVEs

Unreachable Sinks
M1.1 Allowed/blocked list of classes 7
M1.2 Prevent deserialization of domain objects 4
M1.3 Unsafe classes are no longer serializable 2

Enforcing Integrity
M2.1 Adding the “transient” to a sensitive field 1
M2.2 Authenticate before deserializing an object 1
M2.3 Replace Java’s default deserialization API 2

Compartmentalization M3.1 Deserialize within a sandbox 1

We can observe that developers mostly chose to fix vulnera-
bilities by making the sink unreachable. Among the mitigation
strategies used to achieve this goal, the most used one was to create
a list of classes that are allowed/blocked to be deserialized (M1.1).
Some CVEs implemented multiple mitigations as part of their fix
(e.g., CVE-2015-6420 in Apache commons collections used mitiga-
tions M1.2 and M1.3). In the next subsections, we elaborate on
each of these mitigation techniques.

4.3.1 Group 1: Unreachable sinks. It contains mitigation techniques
that make the sink unreachable. These mitigation techniques are:
M1.1 Allowed/Blocked list of classes: It maintains a list of

classes that may or may not be deserialized (allow list and
block list, respectively). When using Java’s default deseri-
alization API, this can be implemented by creating a sub-
class of ObjectInputStream that overrides the resolve-
Class(ObjectStreamClass o)method. Thismethod throws
an exception when the object type is either in the block list
or not in the allow list [31].
Example: For instance, theCVE-2019-12384 is fixed by adding
a gadget class into a list of blocked classes that cannot be
deserialized, as shown below in the “unidiff” of the com-
mit [13]. This commit blocks the serialization of instances
of the class DriverManagerConnectionSource.

src/main/java/com/fasterxml/jackson/databind/jsontype/impl/SubTypeValidator.java
// [databind#2326] (2.7.9.6): one more 3rd party gadget
s.add("com.mysql.cj.jdbc.admin.MiniAdmin");

+
+ // [databind#2334] (2.9.9.1): logback-core
+ s.add("ch.qos.logback.core.db.DriverManagerConnectionSource");

DEFAULT_NO_DESER_CLASS_NAMES = Collections.unmodifiableSet(s);
}

Wealso observed thatmost of the fixes involved using a list of
“blocked classes” (5 times) compared to the use of “allow lists”,
which was observed in only one CVE. In another remaining
vulnerability instance (CVE-2017-15693), we observed that it
had a configuration mechanism that allowed users to create
a list of blocked and allowed classes.

25

MSR4P&S ’22, November 18, 2022, Singapore, Singapore Joanna C. S. Santos, Xueling Zhang, and Mehdi Mirakhorli

Although the use of “blocked classes” was the most common
mitigation technique implemented, it is inherently problem-
atic. New gadget classes, that are not in the list, can be found
over time by attackers and be used to conduct malicious at-
tacks. In fact, the CVE-2019-12384 with the fix shown above
was due to not having a class from the logback core project
in the malicious list.
One of the reasons as to why this occurs is because the use
of blocked lists is easier to implement while minimizing the
chances of backwards compatibility. The use of allow lists
make the program more strict about what classes can be
deserialized, making genuine program flows to be disrupted
with the fix.

M1.2 Prevent deserialization of domain objects: This miti-
gation is typically used when the application has a class
that extends another serializable class (directly or indirectly)
which provides concrete implementations to callback meth-
ods (i.e., “magic methods”). Therefore, to prevent malicious
uses of these subclasses, the application breaks the chain
of method calls by throwing an exception. Hence, the dan-
gerous sink is unreachable because the chain of calls from
a magic method – e.g., readObject(ObjectInputStream)–
to a sink method is broken due to a thrown exception.
Example: The jython project has a class named PyFunction
that extends the class PyObject, which in turn implements
the java.io.Serializable interface. This inheritance re-
lationship makes the PyFunction class to be serializable
too. In CVE-2016-4000, the PyFunction class was found to
be used in successful COOP attacks. Hence, the fix imple-
mented by developers prevents the class Handler to be de-
serialized. This is implemented by overriding the method
readResolve() and making it throw an exception [1], as
shown in the unidiff below for the fix:

src/org/python/core/PyFunction.java
@Override
public boolean isSequenceType() { return false; }

+ private Object readResolve() {
+ throw new UnsupportedOperationException();
+ }

/* Traverseproc implementation */
@Override

M1.3 Unsafe classes are no longer serializable: This mitiga-
tion technique involves making a gadget class no longer
serializable. This is implemented by removing the “extends
Serializable” from the class definition.
Example: In the Apache Commons FileUpload project ver-
sion 1.3.2, a class named DiskFileItem implements the in-
terface FileItem, which extends the java.io.Serializable
interface. As a result, the DiskFileItem class also becomes
serializable. In CVE-2016-1000031, researchers found that
the DiskFileItem has a magic method (invoked during de-
serialization) that allowed an attacker to manipulate files.
The project’s developers fixed this problem by making Disk-
FileItem no longer serializable, as shown in the commit
diff below [10]:

src/main/java/org/apache/commons/fileupload/FileItem.java
-public interface FileItem extends Serializable,FileItemHeadersSupport{
+public interface FileItem extends FileItemHeadersSupport {

4.3.2 Group 2: Enforcing object integrity. It encompasses the miti-
gation approaches below that enforce the integrity of the object:

M2.1 Add transient to a “sensitive” field: To prevent serializing
fields with sensitive information (e.g., passwords) or that are
used as part of a gadget chain, applications enforce that these
fields are not included when the object is serialized. This
is achieved by adding the keyword transient to the field
declaration [25]. By doing that, Java’s built-in deserialization
class ignores the field and does not write/read its value when
serializing/deserializing the object.
Example: The beanshell project version 2.0b5 contains a se-
rializable class named XThis that has a field named invo-
cationHandler. This field is instantiated with a concrete
implementation for the java.lang.InvocationHandler in-
terface that uses reflection to invoke methods. An attacker
relied on this class (Handler) to invoke arbitrary methods
in the program (CVE-2016-2510). To fix this issue, the devel-
opers made the Handler class non-serializable (M1.3) and
the invocationHandler field to be transient [11], as shown
in the commit below:

src/bsh/XThis.java
- InvocationHandler invocationHandler = new Handler();
+ transient InvocationHandler invocationHandler = new Handler();
...
- class Handler implements InvocationHandler, java.io.Serializable
+ class Handler implements InvocationHandler

M2.2 Authenticate before deserializing an object: This mitiga-
tion is used when: (i) the application has to transmit objects,
(ii) it does have a secure transport channel (e.g., SSL) that
can be used for authentication, and (iii) these objects need
to be received in its entirety. In this case, marking fields as
“transient” would not fulfill the application’s needs [18]. This
mitigation involves authenticating the remote source before
receiving objects from it.
Example: In CVE-2016-3737 affecting the server in Red Hat
JBoss Operations Network (JON) before 3.3.6, an attacker
could craft a malicious object and send it to the server to
trigger remote code execution. Since removing serialization
and/or classes would not be a feasible mitigation, the fix
for this issue involved manually configuring the JON to use
SSL client authentication between servers and agents. The
released version updated its documentation to guide the
users on how to properly perform this configuration.

M2.3 Replace Java’s default deserialization API: Java’s built-
in (de)serialization API allows arbitrary object types to be
serialized/deserialized as long as it implements the Seria-
lizable interface. Since this API invokes methods from the
objects’ classes during their reconstruction (i.e., magic meth-
ods), this built-in mechanism is deemed as inherently inse-
cure [2]. Consequently, some applications decide to replace
(or disable) this feature entirely to prevent vulnerabilities.
Example: In CVE-2017-1000034, the akka project disables
Java’s default serialization API and replaces it with its own
(safer) serialization implementation [12].

4.3.3 Group 3: Compartmentalization. This category includes miti-
gation approaches in which the system enforces policies at runtime
to prevent object deserialization misuse.

26

Counterfeit Object-Oriented Programming Vulnerabilities: An Empirical Study in Java MSR4P&S ’22, November 18, 2022, Singapore, Singapore

M3.1 Deserializewithin a sandbox: A sandbox is usedwhenever
an object is deserialized. This sandbox is configured with a
set of policies that are enforced at runtime. Thus, if the dese-
rialized object triggers an operation forbidden by the policy,
the object reconstruction is stopped [14, 29]. Sandboxes are
usually implemented using Java’s SecurityManager class.
This built-in class throws a SecurityException when it
detects that a process is executing an operation not allowed
by the security policy in place.
Example: To fix CVE-2018-1000058 (Jenkins project), devel-
opers made the deserialization of objects to be executed
under a sandbox. Thus, an attacker is not able to execute ar-
bitrary code in the pipeline. A (partial) implementation of the
fix is shown in the code snippet below. The SandboxedUn-
marshaller wraps the execution of all the deserialization
operations such that they all run with sandbox protection.

org/jenkinsci/plugins/workflow/support/pickles/serialization/RiverReader.java
+ /** Applies {@link GroovySandbox} to a delegate unmarshaller. */
+ private static final class SandboxedUnmarshaller ... {
+
+ private final Unmarshaller delegate;
+
+ SandboxedUnmarshaller(Unmarshaller delegate) {
+ this.delegate = delegate;
+ }
+ ...
+
+ @Override public Object readObject() throws /* ... */ {
+ return sandbox(() -> delegate.readObject());
+ }
+
+ @Override public Object readObjectUnshared() throws /* ... */ {
+ return sandbox(() -> delegate.readObjectUnshared());
+ }
+ ...
+ }

4.4 Discussion
The key takeaways from our results are:

• COOP attacks can lead to severe vulnerabilities: This ini-
tial empirical study highlighted the importance of investigating
COOP attacks. In our findings, we observed that CVEs related
to untrusted object deserialization, a type of COOP attack, were
often assigned by security analysts a high/critical severity score.
One of the reasons being that attackers could deploy their attacks
remotely, making it easier to reproduce attacks.

• Developers may use inherently flawed/improper mitiga-
tions: We observed that developers often used “blocked lists”
(M1.1 discussed in Section 4.3) as a way to fix their vulnerabil-
ity. The key problem, however, is that manually curating a list
of dangerous classes lead to missing unknown gadget classes.
That is, developers hardcode this list of dangerous classes based
on prior knowledge of existing attacks. As new attacks are de-
ployed, developers then have to patch the code by adding other
class signatures to their list of blocked classes. This is a reactive
mitigation strategy rather than a proactive approach.

• There are trade-offs involved in the choice of employing
a specific mitigation strategy: We observed that there are
multiple ways that developers fixed COOP vulnerabilities. The
chosen mitigation strategy will often be a trade-off between the
efforts required in changing the software, as well as backward
compatibility considerations. As presented in Section 4.3, some

mitigation strategies, such as replacing Java’s default deserial-
ization API (M2.3) would require extensive implementation and
testing efforts. For that reason, developers often relied on a sim-
pler solution, such as using a list of blocked classes that cannot be
deserialized (M1.1). The use of “allow lists” is a safer alternative
to the use of “blocked lists”. However, this mitigation could also
prevent the deserialization of genuine payloads, affecting the sys-
tem’s intended functionality. Therefore. although inherently less
secure, the use of blocked lists was the most frequently employed
strategy because it is easier to implement and reduce backward
compatibility problems.

5 THREATS TO VALIDITY
One threat concerns the construct validity of our work; that is, to
what extent the operational measurements we used are suitable for
the purpose of our study [26]. In this context, two related threats are
that (i) our analysis heavily depends on the accuracy of the collected
reports (i.e., CVEs, and patches, as described in Section 3.2) and (ii)
the open coding of vulnerability reports. We mitigate this threat
by following a systematic process in which we manually inspected
each CVE and associated artifacts for completeness and accuracy.
Moreover, this manual analysis was performed by one of the authors
who has over 8 years of software security experience.

Another threat relates to the generalizability of the findings of the
work (external validity [26]). We studied only the COOP attacks that
are related to object deserialization and in Java programs. Since we
analyzed a random sample that included only 17 vulnerabilities, we
acknowledge the results may not generalize to other languages (e.g.,
Python) and COOP attack types (e.g., RMI-based COOP attacks). It
is nonetheless important to highlight that our study’s scope was
not to find generalizable findings, but rather to give insights on
this under-explored type of attacks and create a manually curated
dataset that could help other researchers and practitioners.

6 RELATEDWORK
The literature explored COOPs in lower-level languages such as
C++ [4, 23, 30, 35], but these languages do not include metapro-
gramming features. Other languages (e.g., Python, PHP, and Java)
contain programming constructs (e.g., native calls, reflection, and
object serialization) which are used to load classes, invoke methods,
create objects and extend the programs’ functionalities at runtime.
Although seemingly innocuous, these mechanisms place the system
at the risk of attackers tampering with objects (gadgets) in order
to successfully execute code (e.g., load a remote class, instantiate
objects from it and execute its methods with a malicious purpose).

Prior empirical studies explored vulnerabilities rooted in im-
proper input validation problems, such as SQL injection, and buffer
overflows [6, 16, 37] as well as language-specific vulnerabilities [36].
COOP vulnerabilities, however, are very different from these ex-
plored vulnerabilities. First, “dangerous operations” (i.e., sinks) can
be anywhere in the program’s scope (i.e., the language’s built-in
classes, library classes and the application code itself). Second,
COOP attacks rely on dynamic programming features. Third, un-
like these other classes of injection problems, in which the input

27

MSR4P&S ’22, November 18, 2022, Singapore, Singapore Joanna C. S. Santos, Xueling Zhang, and Mehdi Mirakhorli

is a primitive or string, the input provided by the attacker is a spe-
cially crafted object. Hence, this study aimed to provide insights to
developers on how to spot these problems and fix them.

7 CONCLUSION & FUTUREWORK
In this paper, we studied COOP attacks caused by untrusted object
deserialization in Java programs. We investigated their severity,
typical consequences, and mitigation techniques used by develop-
ers to prevent the attacks. Among our findings, we observed that
deserialization-related COOP attacks were often flagged with a
high severity. We also observed that one of the reasons for this
high/critical severity was due to the fact that these attacks lead
to remote code execution. We also found 7 different mitigation
strategies employed by developers to prevent COOP attacks.

In the future, we plan to cover more vulnerabilities related to
not only object deserialization, but also other COOP attack vectors
(e.g., RMI-based). Hence, we plan to (i) extract CVEs from NVD
that are related to COOP, (ii) analyze publicly available exploits
(iii) review the source code of open source systems with dynamic
features such as deserialization, RMI, JNDI, Dependency Injection,
Java Management Extensions (JMX) API and others that can enable
counterfeit Object-Oriented programming attacks.

ACKNOWLEDGMENTS
This work was partially funded by the US National Science Foun-
dation under grants number CNS-1816845 and CCF-1943300.

REFERENCES
[1] 2016. jython: d06e29d100c0. https://hg.python.org/jython/rev/d06e29d100c0

[Online; accessed 29. Jul. 2022].
[2] 2022. Secure Coding Guidelines for Java SE: Serialization and Deserialization.

https://www.oracle.com/java/technologies/javase/seccodeguide.html#8 [Online;
accessed 30. Jul. 2022].

[3] Tommi Aihkisalo and Tuomas Paaso. 2011. A Performance Comparison of Web
Service Object Marshalling and Unmarshalling Solutions. In 2011 IEEE World
Congress on Services. 122–129. https://doi.org/10.1109/SERVICES.2011.61

[4] Markus Bauer and Christian Rossow. 2021. NoVT: Eliminating C++ Virtual Calls
to Mitigate Vtable Hijacking. In 2021 IEEE European Symposium on Security and
Privacy (EuroS&P). IEEE, 650–666.

[5] Grady Booch. 1982. Object-oriented design. ACM SIGAda Ada Letters 1, 3 (1982),
64–76.

[6] Larissa Braz, Enrico Fregnan, Gül Çalikli, and Alberto Bacchelli. 2021. Why Don’t
Developers Detect Improper Input Validation?’; DROP TABLE Papers;–. In 2021
IEEE/ACM 43rd International Conference on Software Engineering (ICSE). IEEE,
499–511.

[7] Brad Calder and Dirk Grunwald. 1994. Reducing Indirect Function Call Overhead
in C++ Programs. In Proceedings of the 21st ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages (Portland, Oregon, USA) (POPL ’94). ACM,
New York, NY, USA, 397–408. https://doi.org/10.1145/174675.177973

[8] Jens Dietrich, Kamil Jezek, Shawn Rasheed, Amjed Tahir, and Alex Potanin.
2017. Evil Pickles: DoS Attacks Based on Object-Graph Engineering. In 31st
European Conference on Object-Oriented Programming (ECOOP 2017), Vol. 74.
Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany, 10:1–
10:32. https://doi.org/10.4230/LIPIcs.ECOOP.2017.10

[9] W. Emmerich and N. Kaveh. 2002. Component technologies: Java beans, COM,
CORBA, RMI, EJB and the CORBA component model. In Proceedings of the 24th
International Conference on Software Engineering. ICSE 2002. 691–692.

[10] GitHub. 2016. apache/commons-fileupload. https://github.com/apache/
commons-fileupload/commit/02f6b2c4ef9aebf9cf8e55de8b90e73430b69385 [On-
line; accessed 30. Jul. 2022].

[11] GitHub. 2016. Avoid (de)serialization of XThis.Handler · beanshel-
l/beanshell@1ccc66b. https://github.com/beanshell/beanshell/commit/
1ccc66bb693d4e46a34a904db8eeff07808d2ced [Online; accessed 29. Jul. 2022].

[12] GitHub. 2017. akka/akka. https://github.com/akka/akka/commit/
cc6561b47e5958923df520b8a9514010d3e11d49 [Online; accessed 30. Jul. 2022].

[13] GitHub. 2019. Fix #2334 · FasterXML/jackson-databind@c9ef4a1.
https://github.com/FasterXML/jackson-databind/commit/

c9ef4a10d6f6633cf470d6a469514b68fa2be234 [Online; accessed 28. Jul.
2022].

[14] GitHub. 2021. jenkinsci/workflow-support-plugin- Pipeline: Supporting
APIs Plugin. https://github.com/jenkinsci/workflow-support-plugin/commit/
a9b071025b5eea33176cefddc1928bce9904c0ef. [Accessed 07/17/2021].

[15] Konrad Grochowski, Michał Breiter, and Robert Nowak. 2019. Serialization in
Object-Oriented Programming Languages. In Introduction to Data Science and
Machine Learning, Keshav Sud, Pakize Erdogmus, and Seifedine Kadry (Eds.).
IntechOpen, Rijeka, Chapter 12. https://doi.org/10.5772/intechopen.86917

[16] Munawar Hafiz and Ming Fang. 2016. Game of detections: how are security
vulnerabilities discovered in the wild? Empirical Software Engineering 21, 5
(2016), 1920–1959.

[17] D. Hagimont and F. Boyer. 2001. A configurable RMI mechanism for sharing
distributed Java objects. IEEE Internet Computing 5, 1 (2001), 36–43. https:
//doi.org/10.1109/4236.895140

[18] Fred Long, Dhruv Mohindra, Robert C Seacord, Dean F Sutherland, and David
Svoboda. 2011. The CERT Oracle Secure Coding Standard for Java. Addison-Wesley
Professional.

[19] Dustin Marx. 2018. JDK 11: Beginning of the End for Java Serialization? https:
//dzone.com/articles/jdk-11-beginning-of-the-end-for-java-serialization. (Ac-
cessed on 04/07/2020).

[20] P. Mell, K. Scarfone, and S. Romanosky. 2006. Common Vulnerability Scoring
System. IEEE Security Privacy 4, 6 (Nov 2006), 85–89. https://doi.org/10.1109/
MSP.2006.145

[21] Matthew B Miles, A Michael Huberman, and Johnny Saldana. 2013. Qualitative
data analysis. Sage.

[22] Martin Monperrus. 2014. A critical review of automatic patch generation learned
from human-written patches: essay on the problem statement and the evaluation
of automatic software repair. In Proceedings of the 36th International Conference
on Software Engineering. ACM, 234–242.

[23] Paul Muntean, Richard Viehoever, Zhiqiang Lin, Gang Tan, Jens Grossklags, and
Claudia Eckert. 2021. ITOP: Automating Counterfeit Object-Oriented Program-
ming Attacks. In 24th International Symposium on Research in Attacks, Intrusions
and Defenses (San Sebastian, Spain) (RAID ’21). ACM,NewYork, NY, USA, 162–176.
https://doi.org/10.1145/3471621.3471847

[24] Matt Noonan, Alexey Loginov, and David Cok. 2016. Polymorphic Type Inference
for Machine Code. SIGPLAN Not. 51, 6 (jun 2016), 27–41. https://doi.org/10.1145/
2980983.2908119

[25] Or Peles and Roee Hay. 2015. One Class to Rule Them All: 0-Day Deserialization
Vulnerabilities in Android. In 9th USENIX Workshop on Offensive Technologies
(WOOT 15). USENIX Association, Washington, D.C., 12 pages.

[26] Per Runeson and Martin Hoest. 2009. Guidelines for Conducting and Reporting
Case Study Research in Software Engineering. Empirical Software Engineering 14
(2009), 131–164.

[27] Joanna C. S. Santos. 2021. Understanding and Identifying Vulnerabilities Related
to Architectural Security Tactics. Ph. D. Dissertation. Rochester Institute of Tech-
nology.

[28] Joanna C. S. Santos, Xueling Zhang, and Mehdi Mirakhorli. 2022. COOP Vulnera-
bilities Dataset. https://github.com/SoftwareDesignLab/coop-dataset

[29] Will Sargent. 2021. Self-Protecting Sandbox using SecurityManager · Terse Sys-
tems. https://tersesystems.com/blog/2015/12/29/sandbox-experiment [Online;
accessed 17. Jul. 2021].

[30] Felix Schuster, Thomas Tendyck, Christopher Liebchen, Lucas Davi, Ahmad-Reza
Sadeghi, and Thorsten Holz. 2015. Counterfeit object-oriented programming:
On the difficulty of preventing code reuse attacks in C++ applications. In 2015
IEEE Symposium on Security and Privacy (S&P). IEEE, 745–762. https://doi.org/
10.1109/SP.2015.51

[31] Robert Seacord. 2017. Combating Java Deserialization Vulnerabilities with Look-
Ahead Object Input Streams (LAOIS).

[32] Michael Stepankin. 2019. Exploiting JNDI injections in Java. https://www.
veracode.com/blog/research/exploiting-jndi-injections-java

[33] The MITRE Corporation 2022. CWE - Common Weakness Enumeration. The
MITRE Corporation. http://cwe.mitre.org

[34] The MITRE Corporation 2022. CWE-502: Deserialization of Untrusted Data. The
MITRE Corporation. http://cwe.mitre.org/data/definitions/502.html

[35] Victor Van Der Veen, Enes Göktas, Moritz Contag, Andre Pawoloski, Xi Chen,
Sanjay Rawat, Herbert Bos, Thorsten Holz, Elias Athanasopoulos, and Cristiano
Giuffrida. 2016. A tough call: Mitigating advanced code-reuse attacks at the
binary level. In 2016 IEEE Symposium on Security and Privacy (SP). IEEE, 934–953.

[36] Morteza Verdi, Ashkan Sami, Jafar Akhondali, Foutse Khomh, Gias Uddin, and
Alireza Karami Motlagh. 2020. An empirical study of C++ vulnerabilities in
crowd-sourced code examples. IEEE Transactions on Software Engineering (2020).

[37] Tao Ye, Lingming Zhang, Linzhang Wang, and Xuandong Li. 2016. An empirical
study on detecting and fixing buffer overflow bugs. In 2016 IEEE International
Conference on Software Testing, Verification and Validation (ICST). IEEE, 91–101.

28

https://hg.python.org/jython/rev/d06e29d100c0
https://www.oracle.com/java/technologies/javase/seccodeguide.html#8
https://doi.org/10.1109/SERVICES.2011.61
https://doi.org/10.1145/174675.177973
https://doi.org/10.4230/LIPIcs.ECOOP.2017.10
https://github.com/apache/commons-fileupload/commit/02f6b2c4ef9aebf9cf8e55de8b90e73430b69385
https://github.com/apache/commons-fileupload/commit/02f6b2c4ef9aebf9cf8e55de8b90e73430b69385
https://github.com/beanshell/beanshell/commit/1ccc66bb693d4e46a34a904db8eeff07808d2ced
https://github.com/beanshell/beanshell/commit/1ccc66bb693d4e46a34a904db8eeff07808d2ced
https://github.com/akka/akka/commit/cc6561b47e5958923df520b8a9514010d3e11d49
https://github.com/akka/akka/commit/cc6561b47e5958923df520b8a9514010d3e11d49
https://github.com/FasterXML/jackson-databind/commit/c9ef4a10d6f6633cf470d6a469514b68fa2be234
https://github.com/FasterXML/jackson-databind/commit/c9ef4a10d6f6633cf470d6a469514b68fa2be234
https://github.com/jenkinsci/workflow-support-plugin/commit/a9b071025b5eea33176cefddc1928bce9904c0ef
https://github.com/jenkinsci/workflow-support-plugin/commit/a9b071025b5eea33176cefddc1928bce9904c0ef
https://doi.org/10.5772/intechopen.86917
https://doi.org/10.1109/4236.895140
https://doi.org/10.1109/4236.895140
https://dzone.com/articles/jdk-11-beginning-of-the-end-for-java-serialization
https://dzone.com/articles/jdk-11-beginning-of-the-end-for-java-serialization
https://doi.org/10.1109/MSP.2006.145
https://doi.org/10.1109/MSP.2006.145
https://doi.org/10.1145/3471621.3471847
https://doi.org/10.1145/2980983.2908119
https://doi.org/10.1145/2980983.2908119
https://github.com/SoftwareDesignLab/coop-dataset
https://tersesystems.com/blog/2015/12/29/sandbox-experiment
https://doi.org/10.1109/SP.2015.51
https://doi.org/10.1109/SP.2015.51
https://www.veracode.com/blog/research/exploiting-jndi-injections-java
https://www.veracode.com/blog/research/exploiting-jndi-injections-java
http://cwe.mitre.org
http://cwe.mitre.org/data/definitions/502.html

SecurityEval Dataset: Mining Vulnerability Examples to Evaluate
Machine Learning-Based Code Generation Techniques

Mohammed Latif Siddiq
msiddiq3@nd.edu

University of Notre Dame
Notre Dame, IN, USA

Joanna C. S. Santos
joannacss@nd.edu

University of Notre Dame
Notre Dame, IN, USA

ABSTRACT

Automated source code generation is currently a popular machine-
learning-based task. It can be helpful for software developers to
write functionally correct code from a given context. However,
just like human developers, a code generation model can produce
vulnerable code, which the developers can mistakenly use. For this
reason, evaluating the security of a code generation model is a must.
In this paper, we describe SecurityEval, an evaluation dataset to
fulfill this purpose. It contains 130 samples for 75 vulnerability
types, which are mapped to the Common Weakness Enumeration
(CWE). We also demonstrate using our dataset to evaluate one
open-source (i.e., InCoder) and one closed-source code generation
model (i.e., GitHub Copilot).

CCS CONCEPTS

• Security and privacy → Software security engineering; •
Software and its engineering→ Software development techniques;
Software verification and validation.

KEYWORDS

dataset, common weakness enumeration, code generation, security
ACM Reference Format:

Mohammed Latif Siddiq and Joanna C. S. Santos. 2022. SecurityEval Dataset:
Mining Vulnerability Examples to Evaluate Machine Learning-Based Code
Generation Techniques. In Proceedings of the 1st International Workshop on
Mining Software Repositories Applications for Privacy and Security (MSR4P&S
’22), November 18, 2022, Singapore, Singapore. ACM, New York, NY, USA,
5 pages. https://doi.org/10.1145/3549035.3561184

1 INTRODUCTION

Code generation techniques are used to generate functional source
code from a given prompt, which could be a comment, an expression
in the form of the function signature, or their mixture [2]. By using
these tools, developers can save time and reduce software develop-
ment efforts and costs. Recently, machine learning-based techniques
have been heavily used in source code generation tools. Large Lan-
guage Learning Models (LLM) using attention-based transformer
technique [30] are pre-trained with textual data, including source

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
MSR4P&S ’22, November 18, 2022, Singapore, Singapore
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9457-4/22/11. . . $15.00
https://doi.org/10.1145/3549035.3561184

code snippets. Later, they are fine-tuned for specialized source code
related tasks such as automated code summarization [10], comple-
tion [14, 15, 29], generation [27, 28] and documentation creation [4].

Although machine learning-based code generation techniques
can generate functionally correct code, they may not be free from
code smells or software vulnerabilities [20, 26]. Since they are
trained on open-source projects, which may contain security flaws
[12, 24, 25], these machine learning models can capture those flaws
and leak them to the model’s output. Hence, it is crucial to validate
the output of such learning-based code generation techniques so
that the generated code is not only functionally correct, but it also
does not introduce a vulnerability / insecure coding practice.

In this paper, we present SecurityEval, a manually curated
dataset for evaluating machine-learning-based code generation
models from the perspective of software security. We collected
Python samples of different vulnerability types, covering multi-
ple categories from the Common Weakness Enumeration (CWE)
[17]. Our dataset contains 130 samples representing 75 distinct vul-
nerability types (CWEs). These samples are formatted as prompts
that could be used for a generalized source-code generation model.
We released this dataset in our repository: https://github.com/s2e-
lab/SecurityEval.

2 DATASET CONSTRUCTION

We created an evaluation dataset to measure the code quality gen-
erated by a machine learning model from the perspective of secure
coding practices. We focused on collecting samples for the Python
programming language because it is currently the most popular
language [5] and is a language developers want to work with the
most [1]. The following sections describe the sample collection
steps and how these samples were formatted to meet our goal.

2.1 Samples Collection

We mined software vulnerability examples with their mapping to a
CWE entry from four external sources:

• CodeQL [11] is a semantic code analysis engine fromGitHub
that can be used to query code and detect vulnerabilities. Its
documentation includes different examples of source code
with bad and good patterns. Hence, we inspected its docu-
mentation and retrieved a total of 36 Python samples con-
taining bad patterns.

• The CommonWeakness Enumeration (CWE) [17] is a
well-known resource for researchers and practitioners. It
enumerates common software and hardware weaknesses
that lead to a vulnerability. Almost every entry in the CWE

29

https://orcid.org/0000-0002-7984-3611
https://orcid.org/0000-0001-8743-2516
https://doi.org/10.1145/3549035.3561184
https://doi.org/10.1145/3549035.3561184
https://github.com/s2e-lab/SecurityEval
https://github.com/s2e-lab/SecurityEval

MSR4P&S ’22, November 18, 2022, Singapore, Singapore Mohammed Latif Siddiq and Joanna C. S. Santos

list provides examples of insecure code in different program-
ming languages (e.g., Java, C, PHP etc.). We extracted a total
of 11 Python samples from it.

• Sonar Rules: SonarSource [23] is a company that has a static
analyzer for finding code problems in multiple programming
languages. Its static analyzer contains around 4,800 rules
to find implementation issues, such as bugs, vulnerabilities,
security hotspots, and code smells. For Python, they have
a total of 217 rules, including 29 vulnerability-related rules.
The online documentation of these rules contains compliant
and non-compliant examples. Thus, we retrieved 34 samples
of non-compliant examples from it.

• Pearce et al. [20] investigated the frequency and circum-
stances in which GitHub Copilot may generate insecure code.
The study focused on 18 CWEs to create different scenarios
for GitHub Copilot, where most of the scenarios are adapted
from CodeQL [11] and for different languages. We included
4 of their Python examples in our dataset.

We chose the first three sources because they are resources
widely used by researchers and practitioners when studying vul-
nerabilities. Furthermore, we included samples by Pearce et al. [20]
because, to our knowledge, it is the first peer-reviewed work to
investigate security problems in ML-based code generation tech-
niques.

After collecting the samples above, we obtained a total of 85
samples. Therefore, to further enrich our dataset, we created extra
45 examples ourselves. Though almost every entry in the CWE list
has examples in different programming languages, they are mainly
written in Java, C/C++, PHP, C#, and Perl. Since these weaknesses
can be present in other programming languages besides the ones
exemplified in the CWE entry, we follow the same pattern/structure
described in the provided examples to create an example of insecure
code in Python. We focused on covering vulnerability types (CWEs)
other than the ones already covered by the 85 samples previously
collected.

2.2 Samples Formatting

For ML-based code generation techniques, we need to provide
the model with a prompt that will provide some context. With
the prompt given as input, the code generation model generates
the code. Therefore, after collecting the sample code snippets, we
manually converted them to a specific format suitable for code
generation techniques.

Our dataset is released following JavaScript Object Notation
Lines (JSONL) format, in which each line contains a JSON object.
The JSON object has three key-value pairs:

• ID: It identifies the sample uniquely. The ID is formatted
in this way: {CWE-ID}_{Source}_{Serial}.py. The CWE-
ID indicates which CWE this sample is related to. Source
indicates from where the sample was extracted (i.e., CodeQL
[11], the CWE list [17], Sonar Rules [23], Pearce et al. [20] or
created by the authors). Serial is a numerical value starting
from 1. For example, an ID equals to CWE-020_codeql_1
means this sample is for evaluating CWE-020: Improper
Input Validation, is adapted from CodeQL [11] example, and
it is first in serial.

• Prompt: The prompt is a partial source code that can be used
as input for code generation techniques. It typically contains
code statements, such as a function definition together with
arguments and a docstring that describes the method’s func-
tionality, as well as import statements, variable declarations,
etc.

• Insecure Code: It provides an example of possible vulnera-
ble code that can be generated by models. The insecure code
outlines how the prompt can lead to vulnerable code. These
insecure codes may contain other vulnerabilities and may
not fully cover the intended function of the prompt.

For instance, the code snippet below1 has an example of a sam-
ple created by the authors for the CWE-798 (Use of Hard-coded
Credentials). The prompt is a function (getDBConnection) and a
docstring about the expected function behavior (i.e., to “return a
mysql database connection”). The “insecure code” attribute shows
an example of a code snippet that hardcodes the expected username
and password when connecting to a MySQL database.
{"ID": "CWE-798_author_1.py",
"Prompt": "import mysql.connector

def getDBConnection():
'''

return a mysql database connection
'''",

"Insecure_code": "import mysql.connector
def getDBConnection():

'''
return a mysql database connection

'''
return mysql.connector.connect(user='user', password='password',

host='host', database='database')"}

2.3 Dataset Overview

As shown in Table 1, our SecurityEval dataset has a total of 130
samples, covering 75 vulnerability types (CWEs). The first column
in this table indicates the vulnerability type (CWE), and the four
remaining columns are for the respective data source with the
number of examples taken from them. The sixth column presents
the number of examples for a particular CWE collected.

According to the CWE list version 4.8 [17], weaknesses related
to software development are categorized into 40 categories. We
cover 28 categories out of these 40 categories. We exclude the
following categories as they are not related to Python or do not have
enough explanation from the context of Python: Complexity Issues,
Documentation Issues, Encapsulation Issues, Memory Buffer Errors,
Pointer Issues, String Errors, Lockout Mechanism Errors, Permission
Issues, Signal Errors, State Issues, Type Errors, and User Interface
Security Issues.

3 APPLICATION

Our dataset can be used to investigate the security of code gen-
eration techniques by giving our prompts to the technique and
then inspecting the generated code. This inspection can be per-
formed manually or automatically. For example, one can manu-
ally compare each generated code to the insecure code samples in
our dataset. Alternatively, a researcher can rely on existing static
analyzers (e.g., Bandit) to automatically find vulnerabilities in the
generated code and then rely on the alarms raised by the tool. If

1We added indentation to this snippet for clarity. In the actual JSONL file in the released
dataset, all JSON objects are flattened out in a single line.

30

SecurityEval Dataset: Mining Vulnerability Examples to Evaluate Machine Learning-Based Code Generation ... MSR4P&S ’22, November 18, 2022, Singapore, Singapore

Table 1: Overview of our SecurityEval Dataset

Vulnerability Type (CWE) Code
QL

CWE
List

Sonar
Rules

Pearce
et al. Authors Total Vulnerability Type (CWE) Code

QL
CWE
List

Sonar
Rules

Pearce
et al. Authors Total

CWE-020 Improper Input Validation 4 0 0 0 2 6 CWE-269 Improper Privilege Management 0 1 0 0 0 1
CWE-611 Improper Restriction of XML External Entity
Reference

1 0 4 0 1 6 CWE-283 Unverified Ownership 0 1 0 0 0 1

CWE-601 Open Redirect 1 0 4 0 0 5 CWE-284 Improper Access Control 0 0 0 0 1 1
CWE-022 Path Traversal 2 0 0 0 2 4 CWE-285 Improper Authorization 1 0 0 0 0 1
CWE-297 Improper Validation of Certificate with Host
Mismatch

0 0 4 0 0 4 CWE-306 Missing Authentication for Critical Function 0 0 0 1 0 1

CWE-327 Use of a Broken or Risky Cryptographic
Algorithm

4 0 0 0 0 4 CWE-312 Cleartext Storage of Sensitive Information 1 0 0 0 0 1

CWE-502 Deserialization of Untrusted Data 1 1 1 0 1 4 CWE-321 Use of Hard-coded Cryptographic Key 0 0 0 0 1 1
CWE-079 Cross-site Scripting 2 0 1 0 0 3 CWE-329 Generation of Predictable IV with CBC Mode 0 0 1 0 0 1
CWE-094 Code Injection 1 0 1 0 1 3 CWE-330 Use of Insufficiently Random Values 0 0 0 0 1 1
CWE-117 Improper Output Neutralization for Logs 1 0 1 0 1 3 CWE-331 Insufficient Entropy 0 0 0 0 1 1
CWE-295 Improper Certificate Validation 1 0 0 0 2 3 CWE-339 Small Seed Space in PRNG 0 1 0 0 0 1
CWE-347 Improper Verification of Cryptographic Signature 0 0 3 0 0 3 CWE-352 Cross-Site Request Forgery (CSRF) 1 0 0 0 0 1
CWE-703 Improper Check or Handling of Exceptional
Conditions

0 0 0 0 3 3 CWE-367 Time-of-check Time-of-use (TOCTOU) Race
Condition

0 0 0 0 1 1

CWE-730 Regex Injection 2 0 0 0 1 3 CWE-377 Insecure Temporary File 1 0 0 0 0 1

CWE-078 OS Injection 1 0 0 0 1 2 CWE-379 Creation of Temporary File in Directory with
Incorrect Permissions

0 0 1 0 0 1

CWE-089 SQL Injection 1 0 0 0 1 2 CWE-384 Session Fixation 0 0 1 0 0 1
CWE-090 LDAP Injection 2 0 0 0 0 2 CWE-385 Covert Timing Channel 0 1 0 0 0 1
CWE-113 HTTP Response Splitting 0 0 2 0 0 2 CWE-400 Uncontrolled Resource Consumption 0 0 1 0 0 1

CWE-116 Improper Encoding or Escaping of Output 1 0 0 0 1 2 CWE-406 Insufficient Control of Network Message
Volume

0 1 0 0 0 1

CWE-215 Insertion of Sensitive Info. Into Debugging Code 1 0 0 0 1 2 CWE-414 Missing Lock Check 0 0 0 0 1 1
CWE-259 Use of Hard-coded Password 0 0 0 0 2 2 CWE-425 Direct Request ('Forced Browsing') 0 0 0 0 1 1

CWE-319 Cleartext Transmission of Sensitive Information 0 0 0 0 2 2 CWE-454 External Initialization of Trusted Vars or Data
Stores

0 0 0 0 1 1

CWE-326 Inadequate Encryption Strength 0 0 0 0 2 2 CWE-462 Duplicate Key in Associative List 0 1 0 0 0 1
CWE-434 Unrestricted Upload of File with Dangerous Type 0 0 0 2 0 2 CWE-477 Use of Obsolete Function 0 0 0 0 1 1
CWE-521 Weak Password Requirements 0 0 2 0 0 2 CWE-488 Exposure of Data Element to Wrong Session 0 0 0 0 1 1

CWE-522 Insufficiently Protected Credentials 0 0 0 1 1 2 CWE-595 Comparison of Object References Instead of
Object Contents

0 0 0 0 1 1

CWE-643 XPath Injection 1 0 1 0 0 2 CWE-605 Multiple Binds to the Same Port 0 0 0 0 1 1

CWE-798 Use of Hard-coded Credentials 1 0 0 0 1 2 CWE-641 Improper Restriction of Names for Files and
Other Resources

0 0 1 0 0 1

CWE-918 Server-Side Request Forgery (SSRF) 2 0 0 0 0 2 CWE-732 Incorrect Permission Assignment for Critical
Resource

0 0 0 0 1 1

CWE-080 Basic XSS 0 0 0 0 1 1 CWE-759 Use of a One-Way Hash without a Salt 0 1 0 0 0 1
CWE-095 Eval Injection 0 0 0 0 1 1 CWE-760 Use of a One-Way Hash with a Predictable Salt 0 0 1 0 0 1
CWE-099 Resource Injection 0 0 1 0 0 1 CWE-776 XML Entity Expansion 1 0 0 0 0 1
CWE-1204 Generation of Weak Initialization Vector (IV) 0 0 1 0 0 1 CWE-827 Improper Control of Document Type Definition 0 0 1 0 0 1
CWE-193 Off-by-one Error 0 0 0 0 1 1 CWE-835 Infinite Loop 0 0 0 0 1 1
CWE-200 Exposure of Sensitive Info. to an Unauthorized
Actor

0 0 0 0 1 1 CWE-841 Improper Enforcement of Behavioral Workflow 0 1 0 0 0 1

CWE-209 Generation of Error Msg. Containing Sensitive
Info.

1 0 0 0 0 1 CWE-941 Incorrectly Specified Destination in a Comm.
Channel

0 1 0 0 0 1

CWE-250 Execution with Unnecessary Privileges 0 1 0 0 0 1 CWE-943 Improper Neutralization of Special Elements in
Data Query Logic 0 0 1 0 0 1

CWE-252 Unchecked Return Value 0 0 0 0 1 1

the alarm raised by the tool matches the CWE associated with the
prompt, the generated code is likely insecure.

In the next section, we walk through an example of using the
SecurityEval dataset to evaluate the security of code generated
by a closed-source (i.e., GitHub Copilot) and an open-source (i.e.,
InCoder) code generation tool. These two models are chosen only
for demonstrative purposes on how to use the dataset; the demon-
stration presented herein does not intend to be exhaustive.

3.1 Example: Using SecurityEval to Evaluate

GitHub Copilot and InCoder

To demonstrate how to apply SecurityEval by following these two
strategies, we provided all the 130 prompts in our dataset as inputs
to two existing machine learning-based code generation tools:

• InCoder [9] is an open-source decoder-only transformer
model [30] that can synthesize and edit code via infilling.
We used the demo of the 6.7B parameter model available on
Huggingface2, where the number of tokens to generate is

2https://huggingface.co/spaces/facebook/incoder-demo

128, the temperature is 0.6 (default value)3. We manually
trim the output up to the targeted function body if the model
generates more than our expectation (i.e., generating code af-
ter completing the function body). If InCoder does not finish
generating the entire function, we use it again to generate
code using our prompt and the previously generated code
as context.

• GitHub Copilot [13] is a closed-source model behind a
paywall from GitHub. The OpenAI Codex [6], an artificial
intelligence model produced by OpenAI4, powers GitHub
Copilot. We used their Visual Studio Code extension to gen-
erate source code from prompts in our dataset.

Subsequently, we followed amanual and an automated strat-
egy to evaluate these tools. During the manual evaluation strategy,
we inspected each generated code to check whether it contains the
specific vulnerability for which the prompt is related to. During

3Temperature is a hyperparameter related to the probability of the model’s output.
The model is more confident when the temperature is low (below 1), and when the
temperature is high (over 1), the model is less certain.
4https://openai.com

31

https://huggingface.co/spaces/facebook/incoder-demo
https://openai.com

MSR4P&S ’22, November 18, 2022, Singapore, Singapore Mohammed Latif Siddiq and Joanna C. S. Santos

the automated evaluation strategy, we analyzed the generated code
using CodeQL [11] and Bandit [7], two static analyzers that can
detect vulnerabilities and/or security smells. Once we ran these
tools, we automatically checked whether their alarms matched the
specific vulnerability (CWE) related to the prompt used to generate
the code. For instance, if we used a prompt related to CWE-78 (OS
Command Injection), we checked the presence of CWE-78 in the
generated code. Notice that a generated code may contain other
vulnerability types and/or is not functionally correct. For exam-
ple, InCoder [9] uses the print function signature for Python 2
(we manually converted the signature compatible to Python 3 for
automated analysis).

Table 2: Evaluating InCoder [9] and GitHub Copilot [13]

using SecurityEval

Model CodeQL Bandit Manual

InCoder [9] 20 (15.38%) 12 (9.23%) 88 (67.69%)
GitHub Copilot [13] 24 (18.46%) 14 (10.77%) 96 (73.84%)

Table 2 presents the number of generated code snippets deemed
vulnerable by relying on a manual or automated strategy. The
numbers in the CodeQL and Bandit columns count the number
of times in which a sample (associated with a specific CWE) was
marked the generated code for that particular CWE (automated
strategy). The Manual column contains the number of vulnerable
generated codes after manually going through all the generated
output and checking if the generated code contains the specific
vulnerability (i.e., the designated CWE for the sample.)

From these results, we observe that most generated code snippets
contain insecure code (about 68% and 74% of code generated by
InCoder and Copilot, respectively), which highlights the importance
of evaluating generated code with respect to security concerns and
not only functionality. Moreover, although an automated strategy
decreases the time and effort in evaluating tools, they may not find
all insecure code instances. However, an automated strategy could
be helpful for quickly comparing two techniques.

4 THREATS TO VALIDITY

One threat to our work is the sources of samples. We consider four
external sources for mining vulnerability examples to create the
dataset in our work. We took the examples from the sources and
modified them according to our task. CWE list [17] and CodeQL [11]
are community-based and open-source project to enumerate com-
mon security vulnerability and detects them. Sonar Rules [23] from
SonarSource provides documentation about the definition and rules
for their static analyzers. Pearce et al. [20] is a peer-reviewed work.
Though these external sources may introduce threats to our work,
they are community-focused and widely used tools and sources for
examples and definitions of common security weaknesses.

We used GitHub Copilot [13] as a black box tool for generating
source code.We also used the demonstration hosted onHuggingface
for InCoder [9] instead of directly using the code for inference.
These tools and models are sources of external validity threats
for demonstrating the application of the dataset. Nevertheless, the
application of this dataset to verify the output of these tools was
only for demonstration purposes.

This dataset is limited to Python samples, introducing a general-
izability threat to this work. However, one of our future goals is to
extend it to other programming languages.

Finally, we manually crafted the examples from external sources
and created additional examples to enrich our dataset. In addition,
wemanually checked the output from themodel and tool after using
our dataset by generating source code. These processes introduce
internal threats to validity.

5 RELATEDWORK

Prior works [3, 8, 19, 21, 22] created vulnerability datasets (bench-
marks) for evaluating vulnerability detection/prediction techniques.
These datasets may include metadata about vulnerabilities in a spe-
cific language/platform (e.g., C/++ [8], Java [21], Android [3], etc.),
their vulnerability types (CWE), and associated patches. Unlike
these works, our dataset serves a different purpose, as it aims to
evaluate the security of automatically generated code.

HumanEval [6] is a dataset commonly used to evaluate the gen-
erated source code from docstring. It can be used to measure the
functional correctness of source code generation. It contains 164
handwritten prompts with canonical solutions from competitive
programming problems, language comprehension, algorithms, and
simple mathematical and interview problems. This dataset is used
for evaluating competition level source code generation [16] and
new state-of-the-art code generation [18]. However, it does not
focus on the security aspect of the generated code. Our dataset
consists of 130 prompts from 75 CWEs that can be used to evaluate
a code generation model from a security perspective.

Pearce et al. [20] designed 54 scenarios across 18 different CWEs
[13] to study the (vulnerable) code generated by GitHub Copilot.
These scenarios focus on GitHub Copilot, whereas our dataset is a
generalized one to use for any context-based source code generation
model and tool. Our dataset is also rich with examples from 75
CWEs with 130 scenarios.

6 CONCLUSION & FUTUREWORK

Although a code generation model can help software engineers to
develop software quickly, the generated code can contain security
flaws. In this paper, we presented SecurityEval, a dataset that
has a diverse evaluation set for testing code generation models
with respect to the presence of vulnerabilities. Our dataset has 130
Python code samples spanning 75 types of vulnerabilities (CWEs).

We also demonstrated how to apply our dataset to evaluate code
generation techniques. To do so, we used prompts from SecurityE-
val to evaluate an open-source code generation model (InCoder)
and a closed-source code generation tool (GitHub Copilot). We
demonstrated how our dataset combined with static analyzers could
be used for automated/semi-automated evaluation of the security
of the generated code.

In future work, we aim to extend the dataset to other languages
(ex: Java, C, C++, etc.). Moreover, we intend to expand the dataset to
cover other vulnerability types (CWEs). For example, SecurityEval
does not include memory buffer errors because these weaknesses
are not prevalent in Python - a memory-managed language. How-
ever, these types of errors are prevalent in languages requiring
developers to release memory (e.g., C/C++) manually.

32

SecurityEval Dataset: Mining Vulnerability Examples to Evaluate Machine Learning-Based Code Generation ... MSR4P&S ’22, November 18, 2022, Singapore, Singapore

REFERENCES

[1] 2022. Stack Overflow Developer Survey 2021. https://insights.stackoverflow.
com/survey/2021 [Online; accessed 28. Aug. 2022].

[2] Miltiadis Allamanis, Earl T Barr, Premkumar Devanbu, and Charles Sutton. 2018.
A survey of machine learning for big code and naturalness. ACM Computing
Surveys (CSUR) 51, 4 (2018), 1–37.

[3] Steven Arzt, Siegfried Rasthofer, Christian Fritz, Eric Bodden, Alexandre Bartel,
Jacques Klein, Yves Le Traon, Damien Octeau, and Patrick McDaniel. 2014. Flow-
Droid: Precise Context, Flow, Field, Object-Sensitive and Lifecycle-Aware Taint
Analysis for Android Apps. In Proceedings of the 35th ACM SIGPLAN Conference
on Programming Language Design and Implementation (Edinburgh, UK) (PLDI ’14).
ACM, New York, NY, USA, 259–269. https://doi.org/10.1145/2594291.2594299

[4] Antonio Valerio Miceli Barone and Rico Sennrich. 2017. A parallel corpus of
python functions and documentation strings for automated code documentation
and code generation. arXiv preprint arXiv:1707.02275 (2017).

[5] Stephen Cass. 2022. Top Programming Languages 2022. IEEE Spectrum (Aug.
2022). https://spectrum.ieee.org/top-programming-languages-2022

[6] Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de
Oliveira Pinto, et al. 2021. Evaluating Large Language Models Trained on Code.
arXiv:2107.03374 [cs.LG]

[7] Bandit Developers. 2022. Bandit. https://bandit.readthedocs.io/en/latest/
[8] Jiahao Fan, Yi Li, Shaohua Wang, and Tien N Nguyen. 2020. A C/C++ code

vulnerability dataset with code changes and CVE summaries. In Proceedings of
the 17th International Conference on Mining Software Repositories. 508–512.

[9] Daniel Fried, Armen Aghajanyan, Jessy Lin, Sida Wang, Eric Wallace, Freda Shi,
Ruiqi Zhong, Wen-tau Yih, Luke Zettlemoyer, and Mike Lewis. 2022. InCoder:
A Generative Model for Code Infilling and Synthesis. https://doi.org/10.48550/
arXiv.2204.05999

[10] Yuexiu Gao and Chen Lyu. 2022. M2TS: Multi-Scale Multi-Modal Approach Based
on Transformer for Source Code Summarization. arXiv preprint arXiv:2203.09707
(2022).

[11] GitHub. 2022. CodeQL. https://github.com/github/codeql
[12] Emanuele Iannone, Roberta Guadagni, Filomena Ferrucci, Andrea De Lucia, and

Fabio Palomba. 2022. The Secret Life of Software Vulnerabilities: A Large-Scale
Empirical Study. IEEE Transactions on Software Engineering (2022).

[13] GitHub Inc. 2022. GitHub Copilot : Your AI pair programmer. https:
//copilot.github.com

[14] Maliheh Izadi, Roberta Gismondi, and Georgios Gousios. 2022. CodeFill: Multi-
token Code Completion by Jointly Learning from Structure and Naming Se-
quences. In 44th International Conference on Software Engineering (ICSE).

[15] Seohyun Kim, Jinman Zhao, Yuchi Tian, and Satish Chandra. 2021. Code pre-
diction by feeding trees to transformers. In 2021 IEEE/ACM 43rd International
Conference on Software Engineering (ICSE). IEEE, 150–162.

[16] Yujia Li, David Choi, Junyoung Chung, Nate Kushman, et al. 2022. Competition-
Level Code Generation with AlphaCode. https://doi.org/10.48550/ARXIV.2203.
07814

[17] The MITRE Corporation (MITRE). 2022. Common Weakness Enumeration.
https://cwe.mitre.org/

[18] Erik Nijkamp, Bo Pang, Hiroaki Hayashi, Lifu Tu, Huan Wang, Yingbo Zhou, Sil-
vio Savarese, and Caiming Xiong. 2022. A Conversational Paradigm for Program
Synthesis. https://doi.org/10.48550/arXiv.2203.13474

[19] Georgios Nikitopoulos, Konstantina Dritsa, Panos Louridas, and Dimitris
Mitropoulos. 2021. CrossVul: a cross-language vulnerability dataset with commit
data. In Proceedings of the 29th ACM Joint Meeting on European Software Engi-
neering Conference and Symposium on the Foundations of Software Engineering
(ESEC/FSE). 1565–1569.

[20] H. Pearce, B. Ahmad, B. Tan, B. Dolan-Gavitt, and R. Karri. 2022. Asleep at the
Keyboard? Assessing the Security of GitHub Copilot’s Code Contributions. In
2022 2022 IEEE Symposium on Security and Privacy (SP). IEEE Computer Society,
Los Alamitos, CA, USA, 980–994. https://doi.org/10.1109/SP46214.2022.00057

[21] Serena Elisa Ponta, Henrik Plate, Antonino Sabetta, Michele Bezzi, and Cédric
Dangremont. 2019. A manually-curated dataset of fixes to vulnerabilities of
open-source software. In 2019 IEEE/ACM 16th International Conference on Mining
Software Repositories (MSR). IEEE, 383–387.

[22] Sofia Reis and Rui Abreu. 2021. A ground-truth dataset of real security patches.
arXiv preprint arXiv:2110.09635 (2021).

[23] SonarSource S.A. 2022. SonarSource static code analysis. https://rules.
sonarsource.com

[24] Joanna CS Santos, Anthony Peruma, Mehdi Mirakhorli, Matthias Galstery,
Jairo Veloz Vidal, and Adriana Sejfia. 2017. Understanding software vulner-
abilities related to architectural security tactics: An empirical investigation of
chromium, php and thunderbird. In 2017 IEEE International Conference on Software
Architecture (ICSA). IEEE, 69–78.

[25] Joanna CS Santos, Katy Tarrit, Adriana Sejfia, Mehdi Mirakhorli, and Matthias
Galster. 2019. An empirical study of tactical vulnerabilities. Journal of Systems
and Software 149 (2019), 263–284.

[26] Mohammed Latif Siddiq, Shafayat Hossain Majumder, Maisha Rahman Mim,
Sourov Jajodia, and Joanna CS Santos. 2022. An Empirical Study of Code Smells
in Transformer-based Code Generation Techniques. In 22nd IEEE International
Working Conference on Source Code Analysis and Manipulation (SCAM) (Limassol,
Cyprus). IEEE.

[27] Zeyu Sun, Qihao Zhu, Yingfei Xiong, Yican Sun, Lili Mou, and Lu Zhang. 2020.
Treegen: A tree-based transformer architecture for code generation. In Proceed-
ings of the AAAI Conference on Artificial Intelligence, Vol. 34. 8984–8991.

[28] Alexey Svyatkovskiy, Shao Kun Deng, Shengyu Fu, and Neel Sundaresan. 2020.
Intellicode compose: Code generation using transformer. In Proceedings of the 28th
ACM Joint Meeting on European Software Engineering Conference and Symposium
on the Foundations of Software Engineering. 1433–1443.

[29] Alexey Svyatkovskiy, Sebastian Lee, Anna Hadjitofi, Maik Riechert, Juliana Vi-
cente Franco, and Miltiadis Allamanis. 2021. Fast and memory-efficient neural
code completion. In 2021 IEEE/ACM 18th International Conference on Mining
Software Repositories (MSR). IEEE, 329–340.

[30] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. 2017. Attention Is All
You Need. https://doi.org/10.48550/ARXIV.1706.03762

33

https://insights.stackoverflow.com/survey/2021
https://insights.stackoverflow.com/survey/2021
https://doi.org/10.1145/2594291.2594299
https://spectrum.ieee.org/top-programming-languages-2022
https://arxiv.org/abs/2107.03374
https://bandit.readthedocs.io/en/latest/
https://doi.org/10.48550/arXiv.2204.05999
https://doi.org/10.48550/arXiv.2204.05999
https://github.com/github/codeql
https://copilot.github.com
https://copilot.github.com
https://doi.org/10.48550/ARXIV.2203.07814
https://doi.org/10.48550/ARXIV.2203.07814
https://cwe.mitre.org/
https://doi.org/10.48550/arXiv.2203.13474
https://doi.org/10.1109/SP46214.2022.00057
https://rules.sonarsource.com
https://rules.sonarsource.com
https://doi.org/10.48550/ARXIV.1706.03762

Author Index
Ali Babar, Muhammad 1

Codabux, Zadia 16

Mirakhorli, Mehdi 21

Østvold, Bjarte M. 7

Oishwee, Sahrima Jannat 16

Rahimi, Mona . 2

Santos, Joanna C. S. 21, 29
Shimmi, Samiha 2

Siddiq, Mohammed Latif 29
Stakhanova, Natalia 16

Tang, Feiyang . 7

Zhang, Xueling 21

34

	0: Title Page
	0: Welcome from the Chairs
	1: Mining Software Repositories for Security: Data Quality Issues Lessons from Trenches (Keynote)
	2: Mining Software Repositories for Patternizing Attack-and-Defense Co-Evolution
	3: Assessing Software Privacy using the Privacy Flow-Graph
	4: An Exploratory Study on the Relationship of Smells and Design Issues with Software Vulnerabilities
	5: Counterfeit Object-Oriented Programming Vulnerabilities: An Empirical Study in Java
	6: SecurityEval Dataset: Mining Vulnerability Examples to Evaluate Machine Learning-Based Code Generation Techniques

