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Abstract
The Technical Debt (TD) metaphor describes development shortcuts taken for expedi-
ency that cause the degradation of internal software quality. It has served the discourse
between engineers and management regarding how to invest resources in maintenance
and extend into scientific software (both the tools, the algorithms and the analysis
conducted with it). Mathematical programming has been considered ‘special purpose
programming’,meant to programand simulate particular problem types (e.g., symbolic
mathematics throughMatlab). Likewise, more traditional mathematical programming
has been considered ‘modelling programming’ to program models by providing pro-
gramming structures required for mathematical formulations (e.g., GAMS, AMPL,
AIMMS). Because of this, other authors have argued the need to consider mathe-
matical programming as closely related to software development. As a result, this
paper presents a novel exploration of TD in mathematical programming by assess-
ing self-reported practices through a survey, which gathered 168 complete responses.
This study discovered potential debts manifested through smells and attitudinal causes
towards them. Results uncovered a trend to refactor and polish the final mathematical
model and use version control and detailed comments. Nonetheless, we uncovered
traces of negative practices regarding Code Debt and Documentation Debt, alongside
hints indicating that most TD is deliberately introduced (i.e., modellers are aware that
their practices are not the best). We aim to discuss the idea that TD is also present
in mathematical programming and that it may hamper the reproducibility and main-
tainability of the models created. The overall goal is to outline future areas of work
that can lead to changing current modellers’ habits and assist in extending existing
mathematical programming (both practice and research) to eventually manage TD in
mathematical programming.
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1 Introduction

Mathematical Programming (MP) is an essential part of Operational Research (OR)
that goes beyond optimisation [45]. Its applications abound in many disciplines of
science and engineering [23, 45, 51, 64]. In the later years, many trends have aligned
OR and MP with other areas such as machine and deep learning, and data science,
among others [59, 73, 81, 88, 93].

Because of this, other authors arguedMP is akin to software development, grounded
on the origin of both disciplines [85], and in the dichotomy of general and special-
purpose programming [6]. MP has been considered ‘special purpose programming’,
meant to program and simulate particular problem types (e.g., symbolic mathematics
throughMatlab) [62]. Likewise, more traditional mathematical programming has been
considered a special-purpose known as ‘modelling programming’ [47], which allows
programmingmodels by providing programming structures required for mathematical
formulations (e.g., GAMS, AMPL, AIMMS). Because of this, many newer languages
for MP are based or inspired by traditional software languages; specific examples
are Pyomo and Julia [40, 55], whose popularity for scientific software development
(namely, made to understand a problem) increased considerably in later years [90].

However, the practices required by software developers and modellers are some-
what akin [59, 88], even though the ‘users’ (namely, the modellers, developers, and
researchers using these languages) seldom identify themselves as developers [13, 26].
This brings an attached consequence–these ‘users’ disregard code quality given they
do not consider themselves as developers [63], leading to another question: What is
software quality in special-purpose programming, and more particularly, MP? This
question cannot be solved straightforwardly, as several authors have pointed that there
is a gap between Software Engineering (SE) and scientific programming, which poses
a severe risk to the production of reliable scientific results [79].

In software engineering, Technical Debt (TD) is a metaphor used to encapsulate,
broadly, a “shortcut for expediency” [28]; it indicates a trade-off between short-term
goals and long-term goals in the development1 [11] and is also related to the implied
cost of additional rework caused by choosing an easy solution instead of a better
approach that would take longer to implement [22]. More importantly, TD can be
introduced unintentionally (namely, unknowingly for the developer) [5, 32].

The usefulness of the TD concept prompted the SE community (both academics
and practitioners alike) to study it further [3, 20, 33, 54, 70, 72]. Nowadays, TD is
regarded as an essential consideration when developing software [33, 74], which can
even sway developers’ morale [11]. Moreover, it has also been expanded to cover
scientific software [19, 52]. Nonetheless, though there is a plethora of work related

1 This is not related to the problem situation being modelled or addressed.
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to improving processes related to project management in OR interventions (i.e., Soft
OR) [1, 27, 50, 86], to the authors’ knowledge, approaching TD in MP remains a
gap in the literature that has been previously highlighted [85]. We consider this to be
complementary to the well-regarded area of Soft OR.

This study aims to address this gap by providing a first exploratory study of TD in
MP. We focused on three specific TD types: Code (the most commonly admitted by
developers [7, 22, 75, 89], andoneof themost researched [33, 54]),Documentation (the
most impactful and interesting for scientific software reviewers [19]), and Versioning
(given the relevance of versioning for open-science and handling TD [15, 56]). To do
this, we conducted an online, anonymous survey with well-established OR academics
and practitioners, and gathered 168 full responses regarding self-reported practices that
may favour (or control) TD. Given that results are self-reported by participants and
subjected to participant bias, we use this to detect traces of TD as a first step to nudge
OR/SE research in this direction. To our knowledge, there is no formal specification
of TD for this paradigm; therefore, we drew from traditional SE definitions.

Overall, our study uncovered modellers’ tendency to refactor and polish the final
model and use version control and very detailed comments. Nonetheless, we discov-
ered traces of negative practices regarding Code and Documentation Debt (e.g., dead
and duplicated code, and outdated or incomplete documentation). We also observed
hints that TD appears to be deliberately introduced, with modellers being aware that
their practices are not the best–this seems to align with prior findings related to scien-
tific software practices [4, 63]. We also highlight four future areas of work to continue
unveiling what TD means for OR. Finally, although the goal may be ambitious, this
paper aspires to stimulate reflective thinking and promote a novel and different line of
action and research among OR practitioners in search of two goals. First, achieving
better programming habits during model development, and second, approaching SE
research in OR programming.

Paper structure. Section 2 introduces the SE concepts that are later analysed in
the context of OR, while Sect. 3 presents the methodology for this study. After that,
Sect. 4 discusses the results of the survey. Section 5 summarises findings to answer our
research questions and presents threats to the validity of our study. Section 6 concludes
the paper.

2 Software engineering concepts

This Section introduces the SE-specific background concepts underlying this work
and the reason for selecting some of them.

2.1 Technical debt

Technical Debt (TD) was mentioned for the first time in 1992 as a metaphor derived
from finances and referred to the need to rework a piece of code in the future, emerg-
ing from technical choices of low quality, in order to obtain short-term advantages
[72]. Since then, the concept was revisited, and nowadays, TD has been redefined by
Avgeriou et al. [5] as follows:
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TD is a collection of design or implementation constructs that are expedient in
the short term, but set up a technical context that can make future changes more
costly or impossible. TD presents an actual or contingent liability whose impact
is limited to internal system qualities, primarily maintainability and evolvability.

However, although expanding the TD concept was relevant, a subsequent study by
Rios et al. [70] (a tertiary systematic literature review) noted that:

(...) it has become increasingly common to associate any impediment related to
the software product and its development process with the definition of TD. This
can bring confusion and ambiguity in the use of the term. Thus, it is important to
know the different types of debt that can affect a project so that one can establish
the limits of the concept and, therefore, to work on the definition of strategies
that allow its management.

Several authors investigated the differences across different types of TD [11, 33,
54, 70, 74, 75], even demonstrating that scientific software may have either different
frequencies and also exclusive types [19, 52]. However, to narrow the scope of the
project (and to limit the survey length to a ‘participant-friendly’ timespan), we selected
three types only–Code, Documentation and Versioning Debt.

CodeDebt (poorlywritten code that violates best codingpractices or rules), has been
demonstrated to be the most commonly admitted by developers [7, 22, 75, 89], and
one of the most researched [33, 54, 70].Documentation Debt (insufficient, incomplete
or outdated documentation) has reportedly been considered the most impactful and
interesting for scientific software reviewers [19] given its influence on software reuse
and replicability [71]. Finally, Versioning Debt (related to problems in producing and
tracing previous versions of the system) is fundamental for collaborative work, given
the relevance of versioning for open-science and handling TD [4, 15, 56]).

Note that Testing Debt (issues found in testing activities that can affect the quality
of the product) is also a commonly addressed TD type [33, 54, 70]. However, work
related to ‘software testing’ in MP remains scarce [83] and thus was not possible to
study further.

TD gained relevance among the SE community [54], as scrutiny of systems’ quality
has becomemore pronounced [3]. They have approached specific procedures to handle
it in software factories [57, 71], how it affects (and is affected by) agile practices [33,
43], how developers approach it [19, 28, 75] what are the “common beliefs” about it
[11], and how developers’ attitudes increase or decrease its existence [3, 20].

TD is classified into types (each with different techniques for measurement, pri-
oritisation, identification and repayment [74]), and the issues (or symptoms of issues)
caused by TD are known as smells [5, 17], which have been adopted by themany forms
of TD. Different works in SE have identified a list of common smells in traditional
Object-Oriented Programming (namely, OOP) [20, 54, 70, 71, 92].

Addressing TD has become essential as “the accumulation of technical debt may
severely hinder the maintainability of the software” unless it is continuously moni-
tored and managed [94]. Repayment has been considered “of critical importance” for
software maintenance [74], although in order to repay TD it is essential to identify it
first [70].
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Table 1 Fowler’s quadrants [31], defining causes of TD introduction

Reckless Prudent

Deliberate (RD) Knowingly decides to
do something wrong, under a
given excuse. Does not con-
sider potential consequences.
Brushes off adequate practices
as unnecessary or not having
time for it

(PD) Is aware of good prac-
tices and smells. Is aware
of constraints (i.e., time). Is
aware of the consequences of
smells. Deliberately decides to
go ahead with smells due to
constraints, but forces to fix
that in the future

Inadvertent (RI) Is not aware of good prac-
tices that avoid smells

(PI) Recognises that did
something wrong in a past
project. Learns good practices
to avoid that smell in the
future. Decides to apply that
in future projects

2.2 TD quadrants

Several authors discussed that TD “is not necessarily identified by who has made such
choices” [72], and that introducing TD is not always done willingly or knowingly–a
developer may do so due to their lack of knowledge [70].

An accepted classification establishes that developers (or in this case, modellers)
incur in TD in two ways [10, 20, 58]: intentionally, which happens deliberately (e.g.,
writing code that does not matches the agreed coding standards) or unintentionally,
incurred inadvertently due to low quality work or lack of knowledge (e.g., junior
programmer unaware of how to improve the code). Works in this area have disclosed
a relationship between inexperienced developers and high-level TD [10].

A second classification extends the above to include a second dimension [31]. These
are summarised in Table 1. In thismodel the first dimension (intentional/unintentional)
is renamed as deliberate and inadvertent (indicated in the vertical axis). A sec-
ond dimension, reckless or prudent, indicates if the TD had been introduced due to
thoughtless or strategic actions.

The number of SE studies based on Fowler’s quadrants continues to increase [8,
12, 14, 20, 75, 91], due to being a simple model that allows an in-depth classification.
As a result, the quadrants were used to model our survey, as introduced in Sect. 3.

3 Methodology

This Section presents the methodology used for this study. First, we describe the goal
and research questions; second, we give an overview of the survey, the questionnaire,
and how responseswere collected. Themethodologyused in thismanuscript, described
in the sections below, was approved by a Human Ethics Research Committee (HREC).
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3.1 Research questions (RQs)

The goal of this study was to understand if common cases of TD (as studied in SE)
can be identified into MP, under the premise that MP is scientific programming under
the umbrella of special-purpose programming. This led to the following research
questions.

RQ1. Which self-reported practices may hint at the existence of TD in MP?
RQ2. What attitudes do modellers have regarding TD?

Because TD is a decision taken (knowingly or not) by developers [5], we decided to
approach this topic from a human-centric point of view through a survey. As such, our
RQs depend on self-reported practices and perceptions, subjected to ‘participant bias’;
this is further discussed in Sect. 3.4, where we highlight the steps taken to mitigate or
contain the related risks. Nonetheless, we believe that, considering the gap of research
regarding TD inMP,we first needed to conduct an initial study to understand “where to
look”–i.e., which types of debts appear regularly, and where to focus future research
efforts. This is not the first study of its kind [63, 71, 92] and will be appropriately
considered in terms of threats (see Sect. 3.4).

Henceforth, we will refer to mathematical modellers, OR researchers, scientific
software developers and similar roles as ‘modellers’ since it is the commonly accepted
name in OR [85].

Finally, given that the primary goal of this paper is to ignite a discussion regarding
the existence of TD in mathematical modelling, Sect. 5 will present a discussion and
implications analysis, without the need for an additional research question.

3.2 Survey construction

Online surveys are commonly affected by a low response rate, generally caused by
long or complex surveys [35], and it has been demonstrated that Likert-style, close-
ended surveys generally have a higher response rate [18]. Moreover, participants are
often biased in their responses, which is both a desirable treat (since it allows assessing
human perception), but also a threat to validity (since it can affect the responses) [35].
Although open questions allow more natural responses, even a strict coding analysis
will be subjected to researcher bias [38].

Quantitative, closed-option surveys have been used in both disciplines related to
this study (SE and OR). On the one hand, SE has extensively applied this methodology
to address different aspects of TD, especially when aiming to uncover the developers’
perspectives or knowledge about this topic [10, 11, 28, 33, 43, 57, 63]. On the other
hand, OR has also used surveys (both quantitative and qualitative) as methodologies
on a myriad of topics [1, 2, 60, 67].

As a result, we structured this study as an exploratory survey meant to “look at
a particular topic from a different perspective” as a pre-study to “help to identify
unknown patterns” [35].

The survey was divided into three main sections. First, a participant information
sheet explained the study’s goal, requesting participants to confirm they were above
18 years old. Second, demographic questions with fixed responses: age group, job
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position, area of work, OR approaches, and residential country. Then, a section of
programming practices to be assessed with 5-point Likert scales, divided into three
pages [18]. The following subsections will detail the development and testing stages,
while Sect. 6 discusses the replication package.

3.2.1 Phased development

The survey was developed through a lengthy construction process, in which we
included different original approaches. We conducted the following phases:

Phase 1. We considered existing surveys related to common challenges in the
development of scientific software [63] and works related to specific TD types. As
explained in Sect. 2, we considered only Code, Documentation and Versioning debt–
besides the aforementioned technical considerations, another reason was to limit the
survey scope to keep the length manageable and appealing to participants. In terms of
DocumentationDebt, we selected practices the three smells highlighted in an extensive
study by other authors [71]. For Code Debt, we originally considered the complete
updated list of smells by Fowler [32]. For Versioning Debt, we considered previously
highlighted common issues in scientific software development [15].

Note that some Code Smells were exclusively dependent on the OOP paradigm
or intrinsic to a given programming functionality. Given that we aimed to obtain a
generalised view rather than assessing the languages’ capabilities, some Code Smells
were discarded. In particular, these are: ‘primitive obsession’, ‘switch statements’,
‘parallel inheritance hierarchies’, ‘lazy class’, ‘middle man’, ‘inappropriate intimacy’,
‘alternative classes’, and ‘refused bequest’.

Phase 2. Using the relationships between smells, refactoring, and quality attributes
[49], we drafted statements (namely, s-statements) written from the modeller’s point
of view to reflect practices often translated into each smell; e.g., “I often leave unused
code in my models just in case I need it in the future”. Using prior work as references
[22, 33, 49, 70], these statements were worded in a way that agreeing with them
resulted in a trace of a smell; this will be further discussed in Sect. 3.2.2.

Considering prior findings regarding survey wording [68] both authors carefully
revised these statements to (a) avoid double-barrelling (namely, asking two questions
per statement), (b) frame all questions in the context of MP, and (c) framing the
statements as neutrally as possible, so as not to bias the respondents. Additionally, we
consider (d) the questions’ order [68] to organise this block in three parts (one per TD
Type). These statements only aimed to answer RQ1, and the assessment was done in
the next phase.

Phase 3. Once these statements were ready, we assessed them with four OR
practitioners (two native English speakers)–two middle-career researchers, a postdoc,
and an early-career researcher. This was done in two groups (pairs), with both authors
present in each group. The discussion was unstructured, and each practitioner was
asked to evaluate if the statement was neutrality worded (point c) and if they read two
or more questions (a).

During this process, the practitioners in the first group commented that some of the
statements were for ‘software developers’ and not ‘modellers’, implying they would
not answer the survey if they received such questions (namely, self-selection bias);
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Table 2 Questionnaire’s organisation in Sect. 2, for RQ1–2

TD type Smell Definition [33, 49, 54, 70]

Code Duplicated code Two or more code fragments that look
almost identical

Shotgun surgery Completing any modifications
requires making many small changes
to many parts of the code

Dead code A piece of code that is no longer used
but remains in the final version of the
code

Speculative generality Unused pieces of code often created
to support anticipated features that are
not currently in development

Incorrect naming Using names that are not semantic or
meaningful, or an inconsistent mix-
ture of naming conventions

Excess comments A large number of comments inside
the code that often mask unreadable,
non-intuitive code

Documentation Insufficient comments There are none, or few comments
inside the code, making it difficult to
read

Non-existent docs No documentation (comments or
specifications) are available during or
after the project is finished

Outdated docs There is some level of documenta-
tion but refers to older versions of the
model, and most information is not
applicable anymore

Incomplete docs The documentation is incomplete,
leaving gaps at different points

Versioning Code repository An incorrect control and trace of pre-
vious versions of the system limits
the ability to compare them or move
between them

both authors requested the practitioners to mark these statements. When consulting
with the second pair, a similar discussion arose without being prompted; given that the
statements selected (and thus, the Code smells) were the same, both authors agreed to
remove them from the survey.

The discussions were unrecorded and informal, and no inter-rater agreement was
calculated. The consulted practitioners had no objections to the statements outlined for
Documentation and Versioning Debt. Note that the participants did not have access to
our research question, nor the link between TD type, smell and statement, to prevent
additional bias. After finalising Phase 3, only the statements related to the Smells
outlined in Table 2 remained part of the survey.

Phase 4.After completingPhase 3, we had 13 statements in total (see Sect. 6). For
each of them (and taking the same considerations as previously outlined in Phase 2),
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we drafted four additional statements (q-statements). These new sentences were aimed
to convey an attitude for the introduction, reflecting the TD Quadrants introduced
in Sect. 2.2. For example, “I copy-paste code inside the same project because it is
faster and easier” is associated with ‘Duplicated Code’ and an RD attitude because it
indicates awareness, presents an excuse and does not consider consequences (top-left
cell in Table 1). These q-statements were aimed to answer RQ2.

Phase 5. As previously done for Phase 3, we reunited with the same pairs of OR
practitioners to analyse the statements drafted in Phase 4. Once again, the processwas
an informal discussion conducted virtually with all four practitioners while analysing
an online, shared document. Additionally, the q-statements were clearly linked to each
corresponding s-statement and the intended attitude, and the practitioners had Table 1
available for consultation.

During this informal discussion, the following suggestions were made. First, some
s-statements led to similar q-statements (e.g., ‘dead code’ and ‘speculative generality’)
and were thus merged (e.g., a single set of q-statements for two s-statements); this had
the added benefit of reducing the time required to complete the survey. Second, for
two groups of s-statements, PD was removed after the practitioners could not agree
on an example. The consensus was that MP models are short-lived; this argument has
been previously raised regarding scientific software development [39, 63, 79].

Finally, the questions order [68] was also considered, accounting for (Phase 1
d). Therefore, each page of the survey third part was divided into blocks of related
s-statements followed by the q-statements (always that order). Please, refer to Sect. 6.

Phase 6. Following best practices, we conducted a pilot study with ten OR prac-
titioners/researchers recommended by the four OR practitioners that assisted with the
sanity checks of previous phases; these included a range of PhD candidates to mid-
career researchers and a single late-career researcher. Given that the original four OR
practitioners reached out via email first, all pilot-participants agreed to provide feed-
back. The survey was distributed in PDF form via email, and the pilot participants
were advised that no responses would be recorded.

However, in their feedback email, half of the pilot-participants did not attempt the
survey arguing it was for ‘software developers’ and not ‘OR practitioners’. This is
a known problem regarding scientific software development, as the ‘users’ (e.g., the
researchers, students or anybody writing scientific software in any shape) tend not to
consider themselves as software developers [6, 62, 63]. Given that a response rate of
about 10–18% is considered acceptable in SE surveys [61], we decided to continue
with this survey structure.

The five emails that provided feedback had minor aesthetic comments, wording
questions or notes used to improve the survey wording and presentation. The only rec-
ommendation regarding the demographics section was to change “country of origin”
for “country of residence”, given academic mobility. The survey instrument resulting
from this phase was approved by the HREC in an Ethical Protocol and is available in
the replication package of Sect. 6. The threats regarding the survey construction are
discussed in Sect. 3.4.
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Table 3 Likert-scale interpretation for each type of statement (Questionnaire, Sect. 2)

RQ Statement Likert interpretation

RQ1 Statements represent a sin-
gle TD smell practice, written
from the developers’ point of
view. For example “I often
copy a piece of code and paste
it in the same project, slightly
modified.”

1–2: Good practice, does not
indicate the smell

3: Neutral, indicating a mixed
or inconsistent practice

4–5: Bad practice, reinforcing
the presence of this smell

RQ2 Statements used to identify
the reasons for each type of
smell. Each statement belongs
to a smell and a quadrant.
For example, “I copy-paste
code inside the same project
because it is faster and easier”

1–2: Does not belong to this
quadrant/this quadrant is not
the reason for the smell

3: Mixed practices with a
potentially inconsistent case
(weak belonging)

4–5: This quadrant can be a
cause for this smell (strong
belonging)

3.2.2 Likert evaluation

In Sect. 3.2.1Phase 2wedeveloped theLikert scales used in the survey.All statements
were rated using a commonLikert scale of 1–5 (from “StronglyDisagree” to “Strongly
Agree”). This approach was selected as Likert is a known, proven approach that most
people can intuitively understand [18]. However, in our survey, the Likert value was
interpreted differently depending on the type of statement. This is is summarised in
Table 3. It was decided not to use a 6-point Likert to favour the traditional approach
and have a middle point.

Note that statements about practices have time qualifiers (e.g., ‘usually’ or ‘often’);
this was purposefully added (and discussed in the phased development) because there
is always a chance developers depart from their habits even if temporarily due to
multiple reasons [36]. Moreover, the survey results are used to determine traces of
behaviours that may hint at the presence of TD or to behaviours that can incur in TD.

Therefore, using prior TD taxonomies that included smells and causes leading to
TD introduction (in one of the TD types assessed) [33, 49, 54, 70], we worded the
statements in a manner that ‘strongly agree’ would always lead to hintinng the trace of
a smell or the cause (quadrant) for incurring in such smell. For example, “My models
often have fragments of code that are no longer used or are outdated (they may be
commented out)” represents the smell ‘unused code’. Therefore, if the respondent
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agreed (indicating that ‘often’ is true), it hinted at a common smell; likewise, the
opposite would be true–not doing this often possible hints at a healthy programming
practice.

This is an exploratory study, and related threats are considered in 3.4, including
those related to the survey construction.

3.3 Survey distribution

We used convenience sampling to invite participants to our study [35]. We manually
generated a list of OR researchers and graduate students by browsing the websites
of Universities and Research Institutes around the world and gathering the publicly
available emails of those academics listed on the faculty or staff pages. This approach
has been commonly used in the area of SE to investigate developers’ concerns or points
of view [33, 72, 92], understanding them as field studies [76]. Moreover, this type of
contact is often positively regarded, as it also allows a better definition of the sample
of candidates [16].

The target size of the invitation list was decided after comparing it to similar survey
studies. Similar approaches have demonstrated an expected response rate of 10–20%
of the original sample [33, 72, 92]. Sincewe aimed to have at least a hundred responses,
we set to collect almost 2000 emails. After removing duplicates (i.e., academics that
have moved institutes and had different emails), our list included 1849 emails.

The surveywas implemented inQualtrics, an advanced survey systemwith powerful
result analysis capabilities2. In terms of response time, Qualtrics estimated a response
time of 15 minutes, and the average response time after the distribution was 17.6
minutes.

We used Qualtrics embedded to send an automated invitation email to the list
of selected participants3. We used the extracted name and affiliation to automatically
customise the email, which also included the invitation and highlightedmain aspects of
the research data distribution. Using these tools, we configured the ‘response address’
as the author’s email address to facilitate responses and reduce the risk of our email
being filtered as spam. The first email was sent at the beginning of September 2020.
After two weeks, we sent a reminder email to those who had not responded yet (or not
finalised) and whose emails had not bounced or opted-out. The survey closed by the
end of September 2020.

From 1849 emails, 32 emails bounced back. After that, 208 surveys were started
but not finished. These incomplete responses were ignored in this study because they
only had the demographics completed and none of the responses regarding the TD
constructs. We assumed this was aligned with the feedback obtained during the Pilot
Study (see Sect. 3.2.1, on Phase 6).

We obtained 168 full responses, totalising a 9.3% response rate (calculated exclud-
ing the bounces). Because this rate was slightly below what it is expected in Software

2 See: https://www.qualtrics.com/.
3 Qualtric’s guide on how to compose these emails is available at: https://www.qualtrics.com/support/
survey-platform/distributions-module/email-distribution/emails-overview/.
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Table 4 Precedence of invited
participants and respondent per
region, including response rate

Region Invited Responded Response rate

North America 504 28 5.55 %

Central America 26 2 7.69 %

South America 583 86 14.75 %

Europe 516 32 6.2 %

Oceania 215 20 9.3 %

Engineering [33, 72, 92], and the ‘newness’ of the topic for OR (see Pilot Study on
Sect. 3.2.1 Phase 6), the number was considered suitable for an exploratory study.

Table 4 shows how many participants of each region were contacted, how many
responded, and the response rate. As researchers, we cannot control who decides to
participate in the survey. Though the final number of responses is similar to that of
similar works [76], participation is skewed towards South America–it had a consid-
erably higher response rate. However, the survey did not question topics relevant to
specific ethnically or culturally-relevant practices; therefore, the demographic does
not impact the outcomes of this study.

3.4 Threats to validity

To a certain extent, the results of our study are subject to limitations related to its exper-
imental design. In particular, the following construct, external, and internal threats
may affect the validity of our findings and conclusions:

Construct threats stem from the degree towhich scales, constructs, and instruments
measure the properties they intend to [66]. Themost critical threat is the survey artefact,
given that it has not been previously validated.We considered using known TD-centric
surveys (e.g., InsighTD [33, 71] or ‘Naming the Pain’ [63]), but discarded it upon a
quick consultation with the researchers that assisted in the phased development. To
mitigate the threats due to the survey, we: a) followed the guidance provided by known
studies [68], b) we derived them from practices previously assessed in SE [22, 33, 49,
70], c) assessed the questionnaire with OR practitioners and through a pilot study (see
Sect. 3.2.1), and d) consider our results as traces of TD, and not as a certainty that TD
itself exists. Given that this study is the first of its kind, it was considered a reasonable
threat to push forward a new line of work.

Internal threats refer to influences thatmay affect the study’s independent variables
in terms of causality [21].Participant selection is the primary threat to internal validity.
To minimise this, we created the invitation list by manually browsing the websites of
Universities and Research Institutes in the sections of Faculty or Staff members. We
mainly aimed for those belonging to departments such as Mathematics o Business
Management but included anyone that listed OR as a research interest or background,
as well as any other keywords related to the area (e.g., approaches, area of work,
topics). To further improve this, the collection was done in two steps: (1) each author
searched websites from a different region, and (2) we switched places and reviewed
the selection according to published manuscripts.
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We also aimed to obtain similarly-sized samples per region (as seen in Table 4).
Central America was small because few countries were scouted, and Oceania included
Southeast Asian countries. Note that we were limited by our languages, as some web-
sites were not translated to English and/or the Google-translated version hindered our
browsing (e.g., whenwe searched academics with the keyword “operational research”,
the website provided no results).

However, our response rate is slightly below 10% (approximately 9.3%, excluding
bounces). Therefore, our results could suffer from non-response bias: a case in which
the opinions of those who chose to participate may differ from those who did not.
Nonetheless, the analysed responses provided a rich data source in a novel area for
OR. It is also possible that our results are affected by the practices of the regions
that answered our survey. However, as researchers, we cannot control who decides
to participate in the survey [35]. This was considered during Phase 6 of the survey
development (Sect. 3.2.1) and may have affected the response rate. The authors also
assume that the 208 demographic-only responses (later removed from the analysis)
were caused by participants’ self-selection bias (considering they received the email
by mistake or that the survey was too programming-centric for them) [37]. This is
enhanced in this case as the premise of this study lies in the proposed similarities
between SE traditional programming and OR’s mathematical programming, previ-
ously discussed.

Additionally, we did not perform a cross-check to determine potentially “contra-
dictory” answers (e.g., the same participant indicates agreement with two possible
opposed attitudes). This is because it is possible that a participant had one type of
attitude when using approach X, and another with approach Y (likewise, with the
programming languages). However, to achieve such fine-grained detail, the survey
would have to enquire about the approach and programming language on each ques-
tion rather than once. Given that this was an exploratory study, it was decided not to
exhaust participants and instead obtain a general view. A fine-grained analysis remains
future work.

External threats relate to conditions that may affect the generalisability of the study
results [21]. Our survey respondents may not adequately represent all modellers, as
practices may differ between disciplines, expertise and even country. A limitation is
that we mainly targeted academics, with few of them self-reporting a mixed industry-
academic affiliation; our conclusions may be limited to this set of respondents. As
such, this study may not fully reflect the practices of those practitioners working
almost exclusively in the industry.

4 Smell & attitude traces

The remaining subsections analyse each code smell. Each table has a tag with an idea
(e.g., [Question Q9]); that ID was given by Qualtrics4, and are used to refer to related
plots available in the Replication Package.

4 Note that Qualtrics assign the IDs in order of creation of the question (not display order), and if a question
is deleted, the IDs are not regenerated. In any case, they are not shown to the participants.
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Fig. 1 Aggregated self-reported demographics, except region

A summary of findings and a formal answer to our RQs are presented in Sect. 5.
Figure 1 summarises the responses to all demographic questions, except region

(that data is available in Table 4). The discipline selection was a multiple-choice (thus,
allowing multiple responses), and 15 participants did not select any option (leaving it
blank); from the reminder, ‘Other’ was the most combined (with existing choices) and
selected in itself. In terms of age groups, a large number are mid-career or late-career
researchers over 36 years of age; it is possible that this demographic affected the self-
selection bias of the survey, but analysing such a hypothesis was out of scope. In terms
of approaches, ‘Optimisation’ was the most popular. In all answers, participants had
the choice of leaving the answer blank (per our Ethics Protocol).

4.1 Code debt

Regarding Code Debt, we analysed duplicated code. In SE, it has been proven that
duplicated code is often caused by copy-pasting the code instead of refactoring to
extract it [25, 34]. Table 5 summarises the values obtained in this question.

About 43.92% of responses (‘Strongly’ plus ‘Somewhat Agree’) indicate that
copy-pasting pieces of code are common practice; nonetheless, about 36.45% deny it
(strongly and somewhat disagree). Interestingly, researchers between 18–25 years old
only answered ‘Strongly or Somewhat Agree’, and most researchers between 26–35
years old selected ‘Somewhat Agree’. Given that this practice is considered harmful
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Table 5 Results regarding duplicated code, and possible attitudes towards it [Question Q9]

Statement Type S.agree Sw.agree Neither Sw.disagree S.disagree

I often copy a piece of code
and paste it in the same project,
slightly modified

Smell 10.28% 33.64 % 1.63% 19.63% 16.82%

I don’t know what I could do to
stop copy-pasting code

RI 3.92% 8.82% 21.57% 24.51% 41.18%

I copy-paste code inside the same
project, because it is faster and
easier

RD 19.23% 27.88% 21.15% 17.31% 14.42%

I copy-paste when testing some-
thing new, but I improve the
“final” version of the code (e.g.,
extract it in a segment)

PD 29.13% 35.92% 14.56% 10.68% 9.71%

I used to do this before, but now I
prefer to avoid duplicates

PI 13.73% 18.63% 34.31% 21.57% 11.76%

in traditional SE programming, it is a trace of TD in MP. As a result, this is considered
an inconsistent practice that may be prone to happening.

Since no code analysis was done to corroborate the number of function clones or
code clones in MP, we cannot infer how common this behaviour is. A plot of ages per
response is available in the replication package as Q9_Age.

In terms of possible causes, it is hinted that the cause is not a lack of knowledge
regarding acceptable practices (RI) since almost 65.7%of responses disagreedwith the
statement. The remaining three possible reasons are somewhat related: the modellers
prefer quick practices while developing the model and trying approaches, but they
are primarily aware that having duplicated code is not a good practice (PD, PI); as
a result, they come back and remove duplicates (notice that about 65% of responses
agreed to some extent with the PD statement). This is consistent with the distribution
of responses in the statement related to the smell.

This block highlights the presence of refactoring–“a process of improving software
systems by applying transformations that should preserve their observable behaviour”
[49]. It may be possibly related to the academic background of most participants, and
the need to refine a model before publishing (also related to PD); however, further
investigating this remains future work.

Duplicated code is often related to the shotgun surgery–a smell that happens when,
given an excessive redundancy, a change impacts multiple parts of the code. We
explored this in conjunction with copy-pasted code, as it is somewhat related; if code
is copy-pasted throughout the project (instead of extracted and reused) if said piece
of code needs to be changed, it is possible it must be altered in all of its occurrences.
The responses are summarised in Table 6.

This case is mixed, as there is about a 10% difference in responses leaning to non-
existence (i.e., disagreeing with the practice) compared to the existence of the smell
(i.e., agreeing with the practice). In both cases, about 20% of respondents neither
agree nor disagree, potentially indicating mixed or inconsistent practices. There is
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Table 6 Results regarding shotgun surgery smells, and possible attitudes towards it [Question Q10]

Statement Type S.agree Sw.agree Neither Sw.disagree S.disagree

My models often have similar
parts repeated all over it

Smell 4.85% 30.10% 20.39% 26.21% 18.45%

I often find myself making multi-
ple minor modifications in several
places of the model to account for
a new change in the problem situ-
ation or requirements

Smell 9.80% 26.47% 21.57% 31.37% 10.78%

I believe that having similar
repeated parts is good for my
model

RI 2.91% 9.71% 28.16% 29.13% 30.10%

I don’t have time or I don’t want
to remove repeated parts (e.g., by
extracting them in a more general,
reusable segment).

RD 3.96% 13.86% 27.72% 30.69% 23.76%

I know it is inconvenient to have
repeated parts, but I prefer to deal
with that later

PI 4.90% 20.59% 27.45% 23.53% 23.53%

no correlation to age or career stage either (see Replication package, Q10_Age and
Q10_CareerStage). Figure 2 summarises how this affects the approaches used
(only for the s-statement),Optimisation is stable across ‘SomewhatAgree’ to ‘Strongly
Disagree’, but Simulation and Statistics lean towards agreeing with the statement,
which may be related to the programming languages used.

As a result, the shotgun surgery was considered as plausible.
Regarding attitudes (quadrants) related to these smells, lack of knowledge regarding

best practices may not be a cause (RI) (as almost 60% of responses disagreed with the
statement); this aligns with the demographics that indicate a large number of senior
participants. There is also a trend to disagree with PI, somewhat correlated to the first
block of questions (namely, Q10), where participants reported the practice of polishing
the model before producing the final version.

Furthermore, unlike SE, lack of time for delivery does not appear to be a common
cause of duplicating code and finishing earlier (RD). This is possibly related to the
fact that most participants are academics, without the pressure to deliver caused by an
industry partner. Such a hypothesis aligns with other authors’ findings regarding data
scientists’ programming behaviours [63].

As a result, none of the three evaluated attitudes had enough agreement to hint at a
possible reason. Therefore, further studies are needed in this regard.

Two other smells were explored in combination with each other: dead code and
speculative generality. These are summarised in Table 2 since they are related to
unused, outdated code in the model’s final version. The responses obtained are sum-
marised in Table 7.

An important number of responses (about 30% on each smell) indicate that dead
code and speculative generalitymay be a concern, each response received about 48.5%
agreement,with disagreements of 31.7%and35.7% (respectively).Given there ismore
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Fig. 2 Shotgun surgery responses in terms of approaches [Question Q10]

Table 7 Survey results regarding smells concerning unused code [Question Q11]

Statement Type S.agree Sw.agree Neither S.disagree S.disagree

My models often have code frag-
ments no longer used or outdated
(they may be commented out)

Smell 7.77% 40.78% 20.39% 18.45% 12.62%

My models often have unused
code in case I need it in the future

Smell 12.87% 35.64% 15.84% 21.78% 13.86%

I am not sure if my models have
unused pieces of code

RI 0.98% 5.88% 8.82% 36.27% 48.04%

I don’t want or care to go back to
the model to remove or find those
unused pieces of code

RD 2.94% 17.65% 26.47% 33.33% 19.61%

I leave in unused codewhilework-
ing, and then remove it for the final
version

PI 9.90% 42.57% 21.78% 18.81% 6.93%

I often go back to the model
after finishing it, and remove
unused/duplicated parts

PD 6.86% 46.08% 18.63% 21.57% 6.86%

than 12% of difference between the agreements, we assumed a a strong trace of both
assessed smells. Therefore, they are labelled as recurrent and prone, respectively.

When analysing the reasons, PI and PD hints to be the cause of the smells, with
over half participants supporting each of these statements.

This may be related to the academic background of participants, the previously
established revision before the final version, and the polishing of models before pub-
lication. It may be possibly related to a scarce use of version control [15] (which
removes the need to keep dead code) and possibly to the trend not to follow SE prac-
tices highlighted by previous studies [63]. This is also aligned with the other findings
of our survey, indicating a trend to refactor models.

However, even though code may be cleaned up before publication, the existence
of dead code during development may cause other smells not assessed in this survey.
Therefore, future works are needed to explore these areas.
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Table 8 Survey results regarding incorrect naming in mathematical programming [Question Q12]

Statement Type S.agree Sw.agree Neither S.disagree S.disagree

My variables usually follow a
mathematical notation only, like
x(i,j), or x,y,z and so on

Smell 18.63% 18.63% 14.71% 27.45% 20.59%

My variables often have names
related to what they repre-
sent in the problem situation
(e.g., isChosen(i,j)
or isChosen(product,
supplier))

Smell 38.83% 43.69% 9.71% 4.85% 2.91%

I namemy variables thinking from
a mathematical point of view, not
a programming one

RI 16.67% 24.47% 29.41% 17.65% 9.80%

I don’t care about “semantic”
names. I won’t come back to the
code, share it, or need it

RD 2.94% 9.80% 14.71% 35.29% 37.25%

I prefer a mathematical notation,
and do not like larger names, as
they are annoying, uncomfortable
or other reason

RD 7.77% 25.24% 17.48% 29.13% 20.39%

I oftenwrite inmathematical nota-
tion because it is faster or more
natural, even if I know that seman-
tic names are better, but I have to
finish earlier

PD 7.77% 14.56% 25.24% 33.01% 19.42%

My naming style changed through
the years. Initially more mathe-
matical, now it is more semantic

PI 19.42% 26.21% 24.27% 17.48 12.62%

The last smell investigated concerning code debt is incorrect naming; SE research
has proven that a readable, intuitive code can reduce human mistakes when coding [9,
42]. Thus, Table 8 summarises responses in this regard.

In SE, naming conventions are considered more semantic if they are closer to a
natural language description [42]. Therefore, a direct ‘translation’ of that idea in OR
would imply that the second row is not a smell, but a correct practice (i.e., an “anti-
smell”); in this case, any disagreement (‘Somewhat’ or ‘Strong’) implies the smell.
Reversing Likert scales in some cases is a common practice [18], and we did it here
so that both s-statements are worded in a neutral way rather than using wording such
as ‘instead’ which could bias the response [68].

Therefore, we explored both options–mathematical and semantic naming, first and
second rows of Table 8, respectively. As can be seen, a dramatic 82.5% of responses
support semantic naming. However, it is possible that the statement was ambiguously
worded; for example, ‘to what they represent in the problem situation’ can vary per
discipline andmay be inherently ‘meaningful’ or ‘semantic’ for a participant but vague
for external readers’. As a result, in the Replication Package, we included two plots
Q12_Math_Approach and Q12_Semantic_Approach, which corresponds to
both s-statements in Table 8.
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Fig. 3 Crossing responses to mathematical and semantic notation (s-statements in Table 8, respectively)

Additionally, Fig. 3 presents the correspondence between both s-statements.
Namely, how many participants (flat count) responded to a given Likert in mathemati-
cal notation (first statement, colours) for each Likert of Semantic notation (horizontal
axis).

This comparison is curious, as about 23% of responses agreed (to some extent) with
both statements, but 47.6% agreed with the semantic notation (the second statement)
but disagreed with the mathematical notation. Although this discloses respondents’
bias, it also indicates that smells related to the notation are plausible. Namely, there
are traces of inconsistent practices that should be further investigated.

When exploring the quadrants as potential reasons for this, it can be seen that RI
weakly hints at a reason with a mixed agreement: most answers are located between
Likert 2–4 (instead than in the ‘Strong’ agreements or disagreements). This is probably
due to the participant’s selected approaches, which in turn affects the programming
languages they use (see Replication Package, figure Q12_RI); while those favour-
ing ‘optimisation’ approaches tended to agree, those favouring ‘data analytics’ are
predominantly neutral or had a strong disagreement.

Participants seem aware of the benefits of semantic names (i.e., PD responses) but
have a diverse approach when regarding why they prefer mathematical notations. The
RD-2 statement provides some reasons (pure preference or disliking longer names).
The disagreement could be related to the fact that respondents do not fully align with
the statement or with external choices such as the mathematical language.

Regarding PD, those using either ‘optimisation’ or ‘simulation’ approaches dis-
agreed with this cause (see Replication Package, figure Q12_PD). This may hint that
they do not consider ‘semantic names’ as meaningful or usable; a hypothesis is that
this is related to the programming languages used or even the style accepted in relevant
academic venues. However, further studies are needed to investigate this hypothesis.

Finally, PI appears to be a secondary reason, indicating that their practices have
changed and improved over time; this is visible throughout all assessed approaches,
as seen in Fig. 4.
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Fig. 4 PI responses to naming conventions per approach (flat count)

4.2 Documentation debt

Insufficient comments in the code is a common documentation smell. In SE, it has
been proven that lack of comments leads to a lowered readability of the code, thus
complicating its maintainability [29]. Moreover, recent studies have demonstrated
scientific software has a similar usage of source code comments in data science [84],
which is also positively perceived by students in computational sciences [87]. There-
fore, Table 9 presents the results related to this.

As can be seen, the responses regarding this smell are skewed towards the negatives;
this was another response with a reversed Likert scale [68]. Moreover, the trend is
consistent across approaches used by participants (see Replication Package, figure
Q14_Approaches). These results are traces of correct practices (thus including
comments). Therefore, commenting is deemed a potentially safe practice.

When analysing the reasons, the negativity in RD hints that respondents may be
aware of the benefits of commenting models. This seems related to the demographics,
which indicate a higher proportion of experienced academics–those over 46 years old
had an apparent disagreement, while those younger than 36 years old had a minor pro-
portion of agreements (see Replication Package on R14_RD). This is consistent with
SE research, which demonstrated that experienced developers write more comments
in their code [78].

Regarding the prudent quadrant, the balance of agree/disagree answers in PD aligns
with previous findings that indicate that participants often return to the model to
improve the final version. However, more insights are available when analysed per
favoured approaches (see Fig. 5). Those using ‘optimisation’ seem ambiguous, as
there is a similar amount of responses between ‘Somewhat Agree’ to a ‘Strong Dis-
agree’. However, the other three main approaches (sans ‘Others’ are inclined toward
an agreement. This may also be related to the programming languages used for each
approach, although further studies are needed.

Thus, PI results indicatemixed practices, as results are somewhat balanced (namely,
a roughly similar selection rate on each response, sans on ‘Strongly Agree’). An
interesting point is that those using ‘optimisation’ approaches tended to disagree with
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Table 9 Results regarding lack of comments in mathematical programming [Question Q14]

Statement Type S.agree Sw.agree Neither S.disagree S.disagree

I don’t usually write comments in
my code, orwrite very few of them

Smell 7.22% 13.40% 13.40% 29.90% 36.08%

I don’t write comments in my
code, because a) I will remember
what I wrote, or b) I don’t have
time to do it or c) I won’t need this
code again

RD 2.11% 13.68% 8.42% 29.47% 46.32%

I don’t know how written com-
ments may help me in reading or
remembering code

RI 2.08% 2.08% 6.25% 26.04% 63.54%

I often go back to the code after the
model is finished, and write a few
comments to remember the gen-
eral idea, or to have an overview
at hand

PD 6.35% 36.46% 20.83% 20.83% 15.63%

I didn’t write comments until I had
to go back to my code and didn’t
remember what I wrote. Now, I
write comments more often

PI 11.58% 18.95% 21.05% 22.11% 26.32%

Fig. 5 PD responses to insufficient comments per approach [Question Q14]

this statement (see Replication Package Q14_PI); this represented almost a 17% of
‘Strong Disagree’ for this group.

Several areas for future works arise from these results, presented in Sect. 5.
We also enquired about non-existent documentation (as a documentation debt

smell), and excess comments (related to code debt). These two are somewhat related
to the above case and highlight that there is a very delicate balance in the proportion
of adequate comments compared to lines of code. Given how similar they are to each
other, we organised them in the same block. Table 10 presents the responses.

In both cases, excess comments (first row) obtained about 50% of agreement with
only 25% of disagreements; however, non-existent documentation (second row) had
about 58%of agreementwith almost 25%of disagreements. Furthermore, Fig. 6 show-
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Table 10 Results regarding excess comments and non-existent documentation [Question Q15]

Statement Type S.agree Sw.agree Neither Sw.disagree S.disagree

I often need to have a lot of com-
ments in the code to clarify or
remember what I did. Especially
in complex cases or problems

Smell 15.63% 34.74% 16.84% 14.74% 10.53%

I prefer to write many comments,
instead of keeping separated notes
or documentation for the model

Smell 23.16% 34.74% 16.84% 14.74% 10.53%

I prefer to write many large com-
ments, instead of simplifying the
code or keeping separate notes

RD 9.47% 13.68% 23.16% 36.84% 16.84%

I don’t know what I could do
to stop needing large comments
and to simplify my code, without
changing assumptions for the rep-
resentation of the problem

RI 2.11% 11.58% 21.05% 35.79% 29.47%

I don’t knowwhat kind of notes or
documentation I could keep

RI 6.32% 7.37% 17.89% 32.63% 35.79%

I used to have complex code with
large comments, but now I prefer
to rework my code, keep notes or
documentation

PI 2.11% 10.53% 34.74% 32.63% 20.00%

Fig. 6 Responses to excess comments per approach [Question Q15]

cases the responses according to the approach used by the practitioners. ‘Statistics’
seem somewhat neutral, while ‘simulation’ leans towards agreement (if combining
both agreement answers). Also, while ‘optimisation’ leans towards an agreement, the
responses are somewhat balanced. This is also consistent with the prior responses,
indicating traces of favouring comments: if participants prefer comments, it is possi-
ble they just document the initial analysis of the model and nothing more. However,
assessing this hypothesis remains future work. As a result, we considered these as
traces of the smell, and considered it recurrent.
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Table 11 Results concerning outdated and incomplete documentation [Question Q16]

Statement Type S.agree Sw.agree Neither Sw.disagree S.disagree

I keep notes at the start of the
project, but don’t often update
them after changes in the model
or problem

Smell 8.33% 28.13% 20.83% 33.33% 9.38%

I keep notes, but I often need to
go back to the model, because my
notes are insufficient to report the
results or to write a paper about it

Smell 5.32% 31.91% 27.66% 29.79% 5.32%

Updating the documentation is too
much effort, and I’m not going to
go back to that model

RD 5.26% 21.05% 27.37% 33.68% 12.63%

I never realised that I should
keep notes alongside a model, to
remember anddocumentwhatwas
done (besideswriting an academic
paper)

RI 3.16% 17.89% 20.00% 26.32% 32.6%

Before, I didn’t care about my side
notes or documentation, but now I
update them because I find them
useful to be able to go back to the
previous models

PI 3.19% 18.09% 34.04% 30.85% 13.83%

I prefer to focus on the model first,
and then write, update or improve
my side notes or documentation

PD 13.68% 37.89% 21.05% 18.95% 8.42%

When assessing the causes, neither appear to have a substantial agreement, as they
are heavily inclined to disagree. Therefore, we did not uncover traces of attitudes
leading to the introduction of these smells. Exploring these by age groups or favoured
approaches provided no additional insights. It can be hypothesised that excess com-
ments are introduced asMP is scientific software of higher complexity, which could (to
some extent) relate to findings on previous works [63]. However, a different approach
and investigation will be needed to evaluate such a hypothesis.

Another documentation debt smell is the state of the accompanying notes or doc-
uments: they can often be outdated or incomplete, loosing helpfulness and being
potentially damaging. This is a common problem in software development [54, 70],
and was thus selected to be explored in OR. Table 11 summarises the responses in this
area.

Both smells presented here have very close and even agree/disagree responses, indi-
cating mixed practices. When analysed by the favoured approach (see Fig. 7), those in
‘optimisation’ mostly answered Likert 2–4, although they lean more towards agree-
ing with incomplete documentation. Those in ‘simulation’ are mostly neutral about
incompleteness, but tend more to disagree with; the opposite happens with ‘statistics’.
Meanwhile, those in ‘data analytics’ are somewhat neutral to both smells. Therefore,
we considered this as traces of the smells, and labelled them plausible. Practices
seem to differ from each approach, possibly caused by programming languages or
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Fig. 7 Responses to incomplete/outdated documentation, per approach [Question 16]

styles needed for publication in academic venues. As a result, future works should be
conducted in this regard, especially analysing source code.

In terms of attitudes (quadrants), RD and PI seem to have similar trends, oscillat-
ing between ‘somewhat agree and disagree’, but leaning towards the disagreement.
Something more extreme happens with RI, as most responses are skewed towards the
disagreement, regardless of age orMP approach; see Replication Package at Q16_RI.

However, the leading cause is hinted to be a PD attitude, which is presented in
Fig. 8. This is consistent with previous responses indicating that respondents return
to the model to polish it for the final version. When analysed per approach, it can
be seen that those using ‘simulation’ do ‘somewhat agree’ but not strongly, which
could hint at a variability of reasons or practices. ‘Statistics’ clearly leaned towards
an agreement, while ‘data analytics’ does so to a lesser extent. Interestingly, those
participants using mostly ‘optimisation’ approaches lean towards agreeing with the
reason but have a considerable number of participants (about 26.3%) ranging from
neutral to disagree. This may indicate that PD is not always the reason for those using
‘optimisation’. Further analyses are needed to understand whether the programming
language or academic publishing venues influence these reasons.

4.3 Versioning debt

The last smell explored is code repository. Version control is a class of systems
responsible formanaging changes to computer programs or collections of information.
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Fig. 8 PD responses to incomplete/outdated documentation per approach [Question Q16]

Its popularity has grown exponentially over the last decade [56], and it is also being
taught in statistical or mathematical courses [15, 30, 46, 77]. Table 12 summarises the
findings in this area.

The format of this question was suggested by the practitioners (Sect. 3.2.1), as
what they experienced as ‘usually seen’–namely, compressing project folders. How-
ever, the responses to the survey indicate strong traces of disagreement with this
behaviour. When dividing this by approach, those using ‘simulation’ slightly lean
toward agreement, but the difference remains minimal. The additional plot is avail-
able in the Replication Package as Q17_Approach. Thus, it is not possible to see
traces of the ‘counter example’ practice of proper version control, and thus we labelled
this as safe.

Furthermore, when exploring the quadrants’ statements, most respondents seem
aware of what version control is (RI1 has almost 61% of responses disagreeing, with
40.6% being ‘Strong Disagree’). Likewise, almost 64% of participants disagreed with
RI2 (not knowing what version control is; note that although we provided a list of
systems (git, GitHub/Lab, BitBucket), the survey did not include a textual definition
of version control, which could have biased the result).

RD1 (renaming files and commenting out) is interesting because there about 30.5%
of responses agreed with the RD1 statement in Q11 (version control) but disagreed
with Q11 (having commented-out dead code in their models). This is visible in Fig. 9.
Currently, the survey did not provide enough evidence to understand why this contra-
diction happens, although respondents’ bias is possible. Further studies are needed to
understand the reason.

Lacking a team (RD2) had a balanced response slightly leaned towards the dis-
agreement; therefore, there were few hints indicating this as a cause. Finally, PD had
over 55% responses disagreeing with the statement; therefore, training and knowl-
edge were not a cause not to use version control. The latter could be related to the
current efforts of teaching version control in statistical or mathematical courses [15,
30, 46, 77]; even if our respondents were mostly mid- or late-career researchers, we
could hypothesise they learned version control in order to teach it. Nevertheless, the
information regarding version control was limited, and further studies are needed.
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Table 12 Responses regarding the use of version control in OR [Question 17]

Statement Type S.agree Sw.agree Neither Sw.disagree S.disagree

I often compress or zip my model
project, so I can “save” what I did
in a previous version

Smell 7.29% 20.83% 14.58% 23.96% 33.33%

I thought that compressing or zip-
ping projects was the best way of
keeping previous versions

RI 3.13% 9.38% 27.08% 19.79% 40.63%

I don’t know what version control
is (e.g., [...])

RI 12.77% 14.89% 8.51% 13.89% 50.00%

I used to compress or zip my code,
but then I discovered version con-
trol (e.g., [...])

PI 10.64% 15.96% 22.34% 14.89% 36.17%

I don’t keep versions of my code.
I just rename files or comment out
fragments of outdated code

RD 9.47% 15.79% 14.74% 20.00% 40.00%

I don’t work in teams (i.e., multi-
ple people writing the code), so I
don’t need version control

RD 11.70% 19.15% 17.02% 17.02% 35.11%

I am aware of the benefits of ver-
sion control (such as git), but my
team is not. Training them would
require time or budget we don’t
have

PD 8.42% 10.53% 22.11% 22.11% 36.84%

Fig. 9 Version Control’s RD1, compared to Q11 (dead code) smell

5 Results & discussion

This section presents a detailed answer to each RQ based on the survey findings.
Alongside the results, we also discuss the implications of the study.

5.1 RQ1: possible TD smells

As mentioned in Sect. 3, the survey only allowed us to infer traces of a behaviour/
practice as a first step to direct the discussions further. During the analysis of survey
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responses to each smell (see Sect. 4), each smell was categorised into one of four
categories listed below. This categorisation was done based on visible trends between
responses. Note that the analysis of the responses in Sect. 4 was presented as flat
percentages of the total answers for that block of responses (i.e., empty responses were
not counted). As a result, the differences were also established as flat percentages. The
four categories are:

1. Safe. This represents a percentage difference favouring Likert values of 1–2
(Strongly/Somewhat Disagree). This difference ought to be over 25%, with a
neutral value lower than 15%, indicating that most participants hinted at a trend
towards best practices known for counteracting this smell.

2. Plausible. Thiswas considered such in two situations. First,when all values (agree-
ment, neutral and disagreement) approached 30%, indicating a balanced response
with no clear trend to any side; e.g., the case of incomplete documentation. Second,
with a difference between 7–10% towards best practices (Strongly/Somewhat Dis-
agree), but a neutral value of about 20%; this usually meant that, although there
was a hint of best practices, the neutrality could have represented mixed prac-
tices. We considered that, though there is a group of practitioners not favouring
these smells, there is still a considerably large number exhibiting them through
inadequate practices.

3. Prone. Opposed to plausible, it happens when the percentage difference is skewed
towards the agreement (Strongly/Somewhat Agree), with a neutral of about 20%.
As before, the large number of neutrals could indicate mixed practices, although
when combined with more negative practices (i.e., the agreement), the traces of
such behaviour were stronger.

4. Recurrent.These results provide strong traces that a TD smell may occur fre-
quently. To be here, the percentage difference between agreement/disagreement
had to be closer to 20% or larger (favouring agreement), with a neutral of about
16–20%.

The belonging of each smell to a category is summarised in Fig. 10, while individual
descriptions smell-by-smell were addressed in Sect. 4.

Regarding specific smells, it can be summarised that:

– Duplicated code was the only smell evaluated twice in the survey. One of the
assessments was prone and the other plausible; given the risk such practice rep-
resents for the maintainability of code, the authors decided to favour the ‘riskier’
category and thus label this smell as prone.

– Prior research demonstrated that problems with the documentation reduce the
reproducibility of findings [80], effectively dampening the continuation of research
through future works [69]. Our survey indicated several traces of problems regard-
ing the documentation of MP. The chosen programming languages may affect
documentation debt. However, considering the current trends and efforts toward
open-science [82], such a lack should be further researched and assessed.

– Dead and duplicated code disclosed enough hints in the survey to be considered a
strong trace. Further studies should be carried out to understand why this happens
and how this can be solved through better programming habits and better support
from languages/tools.
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Fig. 10 TD smells trends uncovered through the survey’s responses

Note that this analysis only indicates trends based on self-reported practices. There-
fore, it is not possible to assert whether such behaviour happens at a given frequency;
however, it does represent enough evidence to confirm that TD smells are happening in
MP and should be further studied. Likewise, it does confirm that the similarity between
MP and traditional software development, at least in regards to TD and programming
practices [6, 62], is somewhat similar.

This exploration was done using a minimal adaptation of the well-established SE
concepts into OR programming. As a result, it is possible that many nuances of TD in
MP have not been detected; this is not considered a threat to the validity of this study,
given that there is no knowledge of taxonomy and this survey was simply exploratory
in nature. However, our findings enable a wide range of studies focusing on how
mathematical models are written instead of what techniques and methods are applied
(i.e., a purely Hard-OR approach [85]).

Additionally, this study was laid out with the primary goal of understanding what
path to take in future research and in which areas to focus future works. Although there
are many solid practices (i.e., as defined in SE) likely accepted in the MP community
(i.e., commenting code and using version control), there are still many areas that need
more exploration (i.e., excess of comments, dead code, and others). This avenues are
further discussed in Sect. 5.3.

Question. Which self-reported practices may hint the existence of TD in MP?
Answer. Several practices have strong traces of behaviours often labelled as
negative practices in SE. Duplicated and Dead Code had clear traces of neg-
ative behaviours, although further studies should be conducted, especially by
analysing available code.
These were related to Speculative Generality (i.e., one minimal change requires
multiple changes), the hypothesis linking this smell to code duplication should
be further assessed, given that it may: a) introduce new errors in the code, b)
complicating the maintenance, and c) increase the cost of sustaining the models
over time.
Finally, Documentation (beyond code comments) had strong traces of negative
practices. Given its effects on reproducibility [69, 80] and the current rise of
open science [82], this should also be assessed.
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5.2 RQ2: modellers’ attitudes

The participants’ responses to the statements related to the modellers’ attitudes (i.e.,
the q-statements) when introducing TD were classified as a weak trend or a strong
trend to a particular smell. Like before, these trends highlight a problem, hinting at a
problematic attitude; in all cases, specialised investigations are required.

As indicated in Table 3, this was done according to the percentage of responses for
a given Likert value associated with a particular quadrant. This categorisation was not
as strict as the classification of the smells, mostly to account for subjectivity and other
possible threats. Figure 11 summarises this information.a

We considered a weak trend when responses were balanced (namely, equally dis-
tributed) among agreement-neutral-disagreement (e.g., PI for incorrect naming), or
when there difference between extremes was about 7–12% (e.g., RD in duplicated
code). Note that PI in shotgun surgery was considered very weak (as discussed in
Sect. 4.1), but included in the results. Likewise, a strong trend was considerably
skewed towards agreement (strongly plus somewhat) with optionally a high value in
the neutral cause. An example of this is PI and PD for the dead code smell.

Most causes of TD (code and documentation) tended towards prudent answers,
with inadvertent being more common. As defined by Fowler [31], a prudent person
is aware of best practices but introduces TD due to different, well-grounded reasons.
In these cases, introducing TD is either a deliberate decision (PD) or a good-but-not-
perfect solution (PI), improved by reflecting on previous and current practices. Given
that this is the first study of its kind and we also had to develop the survey, it is possible
that the PI answers were caused by respondent bias due to ‘guessing ideal answers’
in the survey. Nonetheless, as discussed in Sect. 3.4, we completed several steps to
mitigate this risk.

Regarding specific practices, participants indicated a tendency to return to themodel
to polish the final version, including the documentation. These can be understood as
refactoring. SE research has uncovered multiple advantages and disadvantages of
refactoring and documentation at different stages of the life-cycle [48, 71]. However,
these practices can also be affected by the fact that MP, as scientific programming is
exploratory [6, 62] and perhaps more inclined to it. Like before, further studies are
needed to assess refactoring and documentation in scientific software/MP.

These results are also consistent with the demographics of the survey, which point
towards experienced academics. It has been repeatedly proven in SE that developers
improve and polish their approaches and solutions as the years go by [10, 78]; thus, it
is reasonable to assume that the same “evolution” happens in OR. However, surveys
and studies regarding scientific software have demonstrated this is primarily coded by
junior researchers [39, 63]; thus, it may be possible that a discrepancy between code
and this survey exists. However, performing a ‘mining software repositories’ study of
MP code was out of the scope of this exploratory analysis.

The final question of the survey also posed an open text space for participants
to leave any insight considered valuable. Although no specific open-coding protocol
was followed, upon close inspection (by both authors), it was possible to associate
responses into two groups:
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Fig. 11 Self-reported modellers’ attitudes in terms of Fowler’s TD Quadrants

– Several participants agreed on the similarities between “conventional program-
ming” (i.e., software) and MP; one of them even stated that “conditions hold in
both situations”. Furthermore, one of them addressed the positive effects of under-
standing computer architecture and programming to harness the full potential of
MP. They said that“there is also a need formodellers to understand how the under-
lying computer architecture affects a model (e.g., random numbers, floating-point
arithmetic) as these can lead to significant errors over the life of a model in code”.

– Many respondents disclosed that their practices change according to the experience
of the workgroup members. For example, “I follow different practices depending
on the type of project (collaborative? consultancy? long-term?)”. Teaching spe-
cific practices to new colleagues appears to be somewhat common, “I use Git and
Github for individual projects, group projects, and I also take the time to train new
team members on using these technologies”. Related to this, teamwork has also
improved many participants’ practices, leading them towards those limiting TD.
Specifically, one participant commented that “working with others has improved
my code style greatly, commenting/documentation, variable names, use of version
control”.

Question. What attitudes do modellers have regarding TD?
Answer. Most causes are reportedly prudent, with a larger trend towards inad-
vertent. This could mean that, at any stage, the survey participants’ practices
evolved by ‘tuning the coding style’ (due to non-assessed reasons). Some PD
responses confirm MP’s exploratory nature (as it is a type of scientific software
[39, 62]), but the process of maintenance and changes should be further studied.
This is related to the reckless deliberate attitude on duplicated code matching
the strong traces of that smell.
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However, some smells were inconclusive in terms of attitudes (excess comments
and shotgun surgery), and more analyses are needed.

5.3 Future research efforts

The overarching goal of this exploratory study was to identify where to focus future
research efforts. As a result, we propose the following areas and research questions:

Duplicated code and shotgun surgery. Our survey indicates that modellers are
aware of code duplication in their models, leading to strong traces of this smell. This
smell is traditionally defined for conventional OOP software development [54, 70],
were common programming paradigms (i.e., OOP) allow for an extensive reduction
of duplicated code. Though newer MP languages provide some facilities in this area
[40, 55], it remains an under-developed area of study. Moreover, our survey did not
cover programming languages but approaches.

To study duplicated code in MP, we propose the following future questions. What
are the causes for code duplication in MP? Are some mathematical approaches more
prone to duplication than others? Is this enhanced or limited by the mathematical lan-
guage?What are the possible mathematical solutions for this? Furthermore, questions
tailored explicitly to shotgun surgery can also be posed. How can we measure the
impact of a change when there is duplicated code in MP? How can we limit this? Are
shotgun surgeries introducing programming errors in MP?

Incorrect naming. Results in this area align more with semantic naming but with
fair use of mathematical notation. Thus, this was deemed as ambiguous, as the answers
could have been affected by respondent bias, favoured programming languages, and
participants’ backgrounds. Therefore, it may be possible that the meaningfulness of
names changes for some demographics (i.e., according to the programming back-
ground, the area of work, interdisciplinary work, and others). Furthermore, it is
interesting to study if there are any ‘implicit’ naming conventions (e.g., using a specific
naming convention for a type of variable).

Hence, some questions can be explored in this area. Is themeaningfulness of a nam-
ing convention subject to specific demographics? Are naming conventions influenced
by programming background, size of teams, area of work and interdisciplinary (among
others)? Is the naming affected by the type of programming language selected? Are
there any specific “silently agreed” conventions commonly used in a particular area
of work? How does this affect the reusability of models and their linkage with other
discipline’s products?

Excess of comments. This survey hints at modellers being prone to comment their
code. Prior SE works investigated source code comments as a way of communication
inside a team of developers [78], which opens two specific areas of future research
for TD in MP: 1) Why do modellers need so many comments? 2) Do they disclose
self-admitted technical debt?

The first one could be traced to the complexity of code, the versatility of work teams
[39], how communication is handled, and the existence of different development life-
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cycles [63]. It is possible to study several future questions. Is the number of comments
somehow related to the complexity of the code? What is the ‘tone’ (i.e., sentiment
analysis) of those comments? Which demographics (i.e., areas of work, interdisci-
plinary teams) are more prone to write more comments? How does the presence of
comments affect the model documentation? What kind of information is being passed
through the comments? Does this affect the model’s solution to a problem situation?

The second one addresses a trending topic in SE. Self-admitted technical debt
(SATD) happens when a developer (or modeller, in this case) willingly uses the code
comments to indicate the presence of TD in the code [7]; this may occur either know-
ingly (e.g., “I solved it like this because it is faster”) or unknowingly (e.g., “I don’t
know how to simplify this piece of code”). Since several SE studies have focused
on SATD [7, 22, 44, 65, 89], it would be interesting to conduct differentiated repli-
cas of those studies to discover more similarities and differences between traditional
programming and MP.

Documentation (Non-existent, Outdated, Incomplete). Though previous
research has posed some documentation standards, they are mostly oriented to docu-
menting the problem situation and are used to draw agreement between stakeholders
[1, 27, 50, 86]. Nonetheless, to the best of the authors’ knowledge, there is little
work regarding code documentation and the maintainability of the MPs as pieces of
software.

Some future research questions are as follows. How can documentation improve
reusability and maintainability in MP?What type of documentation would be suitable
(i.e., little effort for high gains)? How can this documentation be aligned with a project
life-cycle? Can this documentation reuse approaches from other disciplines (i.e., SE,
deep learning, data science) to cater to interdisciplinary OR?

Besides pursuing the suggested “future questions”, a recommended next step will
be reinforcing our results through code and groupwork explorations. The former can
be achieved by conducting studies of the type mining repositories, which implies
systematically collecting code and searching for specific data inside it [24]. Moreover,
the latter can be explored through grounded-theory-led workshops and unstructured
interviews [41] to understand typical dynamics. Likewise, both could be combined in
mixed-methods studies. Finally, multiple programming languages are used inMP and,
more broadly, inOR; investigating how the provided functionalities affect development
practices should also be pursued.

6 Conclusions

Mathematical Programming (MP) is an intrinsic part of Operational Research (OR).
However, although it is known that MP is a different type of software development,
scarce investigations have addressed programming practices in MP. Since this topic
has often been addressed in Software Engineering (SE), this paper conducted a novel
exploratory study into MP practices and attitudes based on the definitions of technical
debt (TD) outlined by SE. Specifically, TD is a metaphor reflecting the implied cost of
additional rework caused by choosing an easy solution now instead of using a better
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approach that would take longer. This was based on the concept of MP being somewhat
akin to software development, sharing many technical and process-related similarities,
thus drawing concepts from the latter into OR.

We analysed results from a worldwide, online anonymous survey with 168 valid
responses. It was developed iteratively and meant to assess specific TD smell for
Code, Documentation and Versioning Debt. Results hinted that code and documen-
tation debt have strong traces, thus being possibly common in MP. Other practices
such as detailed commenting and versioning debt did not provide enough evidence of 
negative practices. Regarding attitudes, we determined that most debts are hinted to be 
deliberately introduced during development but then removed, as our results indicate
that modellers are prone to rework their models.

Although similar studies are commonly conducted in SE, their application in OR 
and MP is unique. Therefore, the findings of this study are of interest to many groups,
including modellers aiming to improve their development practices and those devel-
oping (or extending) languages used for MP. We also identified four areas for future 
work in terms of TD for MP: addressing duplicated code and shotgun surgery smell,
incorrect naming, excess comments and the possibility of addressing self-admitted 
technical debt in OR, and code documentation. Finally, further studies (e.g., mining
repositories and workplace exploration) are required to complement the data obtained 
through this study. Nonetheless, this first study successfully provides a direction to 
continue exploring this topic.
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