
Algorithm Debt: Challenges and Future Paths

Emmanuel Iko-Ojo Simon
Melina Vidoni

emmanuel.simon@anu.edu.au

melina.vidoni@anu.edu.au

Australian National University

Australia

Fatemeh H. Fard
fatemeh.fard@ubc.ca

University of British Columbia

Canada

ABSTRACT

Technical Debt (TD) is the implied cost of additional rework caused

by choosing easier solutions in favour of shorter release time. It

impacts software maintainability and evolvability, manifesting as

different types (e.g., Code, Test, Architecture). Algorithm Debt (AD)

is a new TD type recently identified as sub-optimal implemen-

tations of algorithm logic in scientific and Artificial Intelligence

(AI) software. Given its newness, AD and its impact on AI-driven

software remains a research gap. This poster aims to motivate re-

flective discussion on AD in AI software, by summarising findings,

discussing its possible impact, and outlining future areas of work.

KEYWORDS

Technical Debt, Algorithm Debt, Artificial Intelligence, Software

Engineering, Code Debt, Scientific Software

ACM Reference Format:

Emmanuel Iko-Ojo Simon, Melina Vidoni, and Fatemeh H. Fard. 2023. Al-

gorithm Debt: Challenges and Future Paths. In Proceedings of International

Conference on AI Engineering – Software Engineering for AI (CAIN’23). ACM,

New York, NY, USA, 2 pages. https://doi.org/XXXXXXX.XXXXXXX

1 INTRODUCTION

Technical Debt (TD) are the costs incurred in software development

due to tasks postponed during its development process [14]. TD-

ridden software is reportedly more prone to reducedmaintainability

and evolvability [13, 14], code-breaking defects, vulnerabilities,

irreproducible results, and overall low-quality [5]. Most of the prior

works studying TD centred around object-oriented programming

languages (OOP) and their particularities [18], with limited research

approaching scientific and Artificial Intelligence (AI) software.

Recent research uncoveredAlgorithmDebt (AD)–“sub-optimal

implementations of algorithm logic” [10, 18], often found in

performance-critical and algorithm-intensive projects such as AI

frameworks and scientific software used to support research. AD’s

presence is concerning given the increasingly ubiquitous presence

of AI in daily software [5, 10], and the lack of AD-specific research.

In particular, those studies uncovering traces of AD did not inves-

tigate it per se, but found evidence of its existence while tackling

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

CAIN’23, May 15-16th, 20th, Melbourne, Australia

© 2023 Association for Computing Machinery.
ACM ISBN 978-1-4503-XXXX-X/18/06. . . $15.00
https://doi.org/XXXXXXX.XXXXXXX

different research questions [5, 10, 18]. Likewise, AD’s definition

[10] is derived from other TD types, and does not account for spe-

cific nuances that may exist.

Based on research of other TD types, low-quality code, incon-

sistent and unreproducible results, and faulty code that produces

non-robust outputs are the cause of known problems for scien-

tists [15, 18, 19]. With the widespread of AI and the reliance on

AI-based systems, and the renewed interest on AI-explainability

[12], the quality of these systems has become critical for their ac-

ceptance [7]–and given that nowadays AI penetrates all areas of

science, industry and our private lives [6], thorough research on Al-

gorithm Debt, its impact, causes, and management strategies should

be carried out.

Motivational Examples. Albeit Algorithm Debt is a nascent

concept, its negative impact in developing and using AI-driven

software have consistently affected the non-academic public.

Economic Impact: Knight Capital1 was a firm that specialised

in executing trades for retail brokers. In 2012, its software develop-

ment team was pressured to complete the changes to the AI-driven

algorithms, which led them to take considerable shortcuts to speed

the process. Due to this faulty implementation, the company unin-

tentionally purchased stocks worth $7 billion, only during their first

hour of trading, leading to further $440M in cash losses.

Live Impact:AI-software is also being used in safety critical sys-

tems, transportation, and military operations [6], where the effects

of TD-ridden algorithm logic could have life-threatening conse-

quences [1, 4]. For example, in 2018, Arizona recorded a pedestrian

fatality, where a person was tragically struck by an Uber Test Vehi-

cle (a self-driving car) while crossing a four-lane road2. The alleged

cause was the AI’s failure to “classify an object as a pedestrian

unless that object was near a crosswalk”.

Transitive Impact: Since AI software is mostly developed in

package-based environment [17], e hypothesise that if there is a

flaw in the algorithm logic of a framework, every application using

that framework will transitively suffer from Algorithm Debt. Thus,

research leveraging the “smelly" application may be negatively

impacted by validity threats, and potentially incorrect results.

2 CURRENT CHALLENGES

AD was found on tangential works uncovering traces of it. We

present examples, outline limitations, and define a path ahead.

Self-Admitted Technical Debt (SATD). Instances of AD were

found while searching SATD in Deep Learning (DL) projects (e.g.,

Is there a faster way to do pooling in the channelfirst

1Case Study: Knight Capital
2Five Case Studies of AI Failures

90

2023 IEEE/ACM 2nd International Conference on AI Engineering – Software Engineering for AI (CAIN)

979-8-3503-0113-7/23/$31.00 ©2023 IEEE
DOI 10.1109/CAIN58948.2023.00020

CAIN’23, May 15-16th, 20th, Melbourne, Australia Simon, et al.

case?) [10], and R packages (e.g., It seems this over-estimates
the truth) [18], and reportedly represent 5% of SATD in scientific

software. Likewise, AD has only been detected on source code com-

ments [16], even though SATD can occur in any human-written

document that reflects developer interaction, such as commits, is-

sues, pull requests, and code reviews.

Challenges. Despite traces of AD being uncovered, there is

presently no commonly accepted definition; Liu et al. [10] pro-

posed one specific to DL frameworks, and Vidoni [18] extended it

to scientific software, but its nuances have not been addressed. Au-

tomated AD identification is also challenging [16], given both its

scarcity and the lack of specific word-patterns; although they exist

for other TD types [11, 18], they are not available for AD.

TD Smells and AD Detection. TD is often defined by its smells–

specific symptoms in the source code related to a TD type [11].

Prior research searched for TD smells (and specifically, code smells)

within AI software; e.g., Sculley et al. [15] found that Design Debt

erode abstraction boundaries in Machine Learning (ML) systems,

while others identified ML-specific code smells [9, 19]. There have

also been advances regarding data-related smells [8].

Challenges. These prior works demonstrated that scientific and

AI software has specific TD smells. However, there is no research

regarding AD-specific smells, which hinders the creation of metrics

to automatically and statically detect AD (e.g., through Automated

Static Analysis Tools such as SonarQube3). This also constrains

what type of investigations can be undertaken–if AD cannot be

identified, it cannot be studied, managed, and/ or remedied.

AD and Explainable AI. Explainability clarifies AI-made deci-

sions to the user (e.g., policy makers), to better comprehend the

model’s decision-making process. Overall, explainability is essen-

tial to support a model’s accountability, and to ensure that users

fully understand how the recommendations were produced [12].

Challenges. We argue that explainability may not be fully

achieved if AD exists. Prior works [14, 19] show that TD limits

what can be done and explainability is required for the understand-

ing and uncovering of AD. Additionally, based on research in other

TD types, AD may increase the complexity of a code, therefore it

may hinder explainability. We also argue that TD has been shown

to decrease readability and understandability of code from a devel-

oper’s perspective [2], complicating the transparency of a model’s

implementation. We can also foresee that the more a system grows

[3], TD tends to naturally accrue; so it will hinder the explanations

if the system continues to grow and that is not clear enough.

3 FUTUREWORKS

Proposal #1. Defining AD will enable its assessment on multiple

natural language sources (e.g., commits, issues, code reviews, pull

requests); namely, all sources considered for SATD. This would

allow investigating how AD may vary across disciplines, enabling

its identification. Intuitively, code created for bioinformatics has

considerable differences from social sciences, and self-admitted AD

may vary (e.g., be written differently). SATD will allow discerning

what nuances are commonly admitted by AI developers.

Proposal #2. We must identify AD’s unique smells, including

3Static analysis with Sonarqube- https://www.sonarsource.com/products/sonarqube

possible metrics for its detection, to allow determining how long

AD survives, how it is fixed and managed. Without understanding

AD’s smells, it is not feasible to thoroughly analyse its causes and

repercussions on the performance and behaviour of AI-driven soft-

ware, nor in the broader scientific software. Also, these smells and

metrics could then be used to craft detection tools that would be

utilised for a study on the detection of AD within a code to assist

in its management and with its mitigation in real-time.

Proposal #3. Investigating the impact of AD in AI’s inconsisten-

cies generated is critical–it would allow studying how developers’

code-related decisions could transitively affect high-ranking policy-

maker that depend on AI-driven software. This is essential, because

if AD remains under-researched, any issues arising from it will re-

main unaddressed. Given AI’s current pervasiveness, the continued

ethical discussions about its impact (e.g., AI-driven art), and the

general public’s predisposition, research into AD could also lead to

creating quality standards for AI-driven software.

REFERENCES
[1] Jyotika Athavale, Andrea Baldovin, Ralf Graefe, Michael Paulitsch, and Rafael

Rosales. 2020. AI and reliability trends in safety-critical autonomous systems on
ground and air. In Int. Conf. on Dependable Systems and Networks. IEEE, 74–77.

[2] Gabriele Bavota and Barbara Russo. 2016. A large-scale empirical study on self-
admitted technical debt. In Int. Conf. on Mining Software Repositories. 315–326.

[3] Terese Besker, Antonio Martini, Rumesh Edirisooriya Lokuge, Kelly Blincoe, and
Jan Bosch. 2018. Embracing technical debt, from a startup company perspective.
In Int. Conf. on Software Maintenance and Evolution. IEEE, 415–425.

[4] Kuo Chen, Jin Zhang, Narasimha M Beeraka, Mikhail Y Sinelnikov, Xinliang
Zhang, Yu Cao, and Pengwei Lu. 2022. Robot-Assisted Minimally Invasive Breast
Surgery: Recent Evidence with Comparative Clinical Outcomes. Journal of
Clinical Medicine 11, 7 (2022), 1827.

[5] Zadia Codabux, Melina Vidoni, and Fatemeh H Fard. 2021. Technical debt in
the peer-review documentation of r packages: A rOpenSci case study. In Mining
Software Repositories. IEEE, 195–206.

[6] Frank Emmert-Streib. 2021. From the Digital Data Revolution toward a Digital
Society: Pervasiveness of Artificial Intelligence. Machine Learning and Knowledge
Extraction 3, 1 (2021), 284–298. https://doi.org/10.3390/make3010014

[7] Michael Felderer and Rudolf Ramler. 2021. Quality Assurance for AI-Based
Systems: Overview and Challenges (Introduction to Interactive Session). In Int.
Conf. on Software Quality. Springer, 33–42.

[8] Harald Foidl, Michael Felderer, and Rudolf Ramler. 2022. Data Smells: Categories,
Causes and Consequences, and Detection of Suspicious Data in AI-Based Systems.
In Int. Conf. on AI Engineering: Software Engineering for AI (USA). ACM, 229–239.

[9] Jiri Gesi, Siqi Liu, Jiawei Li, Iftekhar Ahmed, Nachiappan Nagappan, David Lo,
Eduardo Santana de Almeida, Pavneet Singh Kochhar, and Lingfeng Bao. 2022.
Code Smells in Machine Learning Systems. arXiv preprint 2203.00803 (2022).

[10] Jiakun Liu, Qiao Huang, Xin Xia, Emad Shihab, David Lo, and Shanping Li. 2020.
Is using deep learning frameworks free? characterizing technical debt in deep
learning frameworks. In ICSE: Software Engineering in Society. ACM/IEEE, 1–10.

[11] Everton da S Maldonado and Emad Shihab. 2015. Detecting and quantifying
different types of self-admitted technical debt. In Int. Workshop on Managing
Technical Debt. IEEE, 9–15.

[12] Harshkumar Mehta and Kalpdrum Passi. 2022. Social Media Hate Speech Detec-
tion Using Explainable Artificial Intelligence. Algorithms 15, 8 (2022), 291.

[13] Aniket Potdar and Emad Shihab. 2014. An exploratory study on self-admitted
technical debt. In Int. Conf. on Software Maintenance and Evolution. IEEE, 91–100.

[14] Nicolli Rios, Manoel Gomes de MendonCa Neto, and Rodrigo Oliveira SpInola.
2018. A tertiary study on technical debt. Inf. and Soft. Tech. 102 (2018), 117–145.

[15] David Sculley, Gary Holt, Daniel Golovin, Eugene Davydov, Todd Phillips, Diet-
mar Ebner, Vinay Chaudhary, Michael Young, Jean-Francois Crespo, and Dan
Dennison. 2015. Hidden technical debt in machine learning systems. Advances
in Neural Inf. Proc. Systems 28 (2015).

[16] Rishab Sharma, Ramin Shahbazi, Fatemeh H Fard, Zadia Codabux, and Melina
Vidoni. 2022. SATD in R: Detection and Causes. JASE 29, 2 (2022), 1–41.

[17] Melina Vidoni. 2021. Evaluating unit testing practices in r packages. In Int. Conf.
on Software Engineering. IEEE, 1523–1534.

[18] Melina Vidoni. 2021. Self-admitted technical debt in R packages: An exploratory
study. In Int. Conf. on Mining Software Repositories. IEEE, South Korea, 179–189.

[19] Haiyin Zhang, Luís Cruz, and Arie van Deursen. 2022. Code Smells for Machine
Learning Applications. In Int. Conf. on AI Engineering: Software Engineering for
AI (Pittsburgh, Pennsylvania). ACM, USA, 217–228.

91

